精英家教网 > 高中数学 > 题目详情
2.已知m>0,n>0,则当81m2+n2+$\frac{729}{8mn}$取得最小值时,m-n的值为(  )
A.-4B.4C.-8D.8

分析 求出代数式取最小值时m,n的值,作差即可.

解答 解:∵m>0,n>0,
∴81m2+n2+$\frac{729}{8mn}$
≥18mn+$\frac{729}{8mn}$
≥2$\sqrt{18mn•\frac{729}{8mn}}$
=81,
当且仅当m=$\frac{1}{2}$,n=$\frac{9}{2}$时“=“成立,
故m-n=$\frac{1}{2}$-$\frac{9}{2}$=-4,
故选:A.

点评 本题考查了基本不等式的性质,考查转化思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知抛物线C:x2=2py(p>0)的焦点为F,点P为抛物线C上的一点,点P处的切线与直线y=x平行,且|PF|=3,则抛物线C的方程为(  )
A.x2=4yB.x2=8yC.x2=6yD.x2=16y

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.射手小张在一次射击中射中10环、9环、8环、7环、7环以下的概率分别是0.24、0.28、0.19、0.16、0.13,计算这个射手在一次射击中:
(1)射中10环或9环的概率;
(2)至少射中7环的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解不等式组:$\left\{\begin{array}{l}{\frac{5}{x+3}≥1}\\{{x}^{2}+x-2≥0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉,在我市推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给学生,现对某一时段云课的点击量进行统计:
点击量[0,1000](1000,3000](3000,+∞)
节数61812
(Ⅰ)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数.
(Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间[0,1000]内,则需要花费40分钟进行剪辑,若点击量在区间(1000,3000]内,则需要花费20分钟进行剪辑,点击量超过3000,则不需要剪辑,现从(Ⅰ)中选出的6节课中随机取出2节课进行剪辑,求剪辑时间X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx-x2+ax+2,g(x)=x3-x2-3.
(1)若函数f(x)的图象在x=1处的切线平行于x轴,求函数f(x)在[1,2]上的最大值与最小值;
(2)对于任意的x1,x2∈[1,2],f(x1)≥g(x2)恒成立,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知在平面直角坐标系xoy中,直线x-ky+2k-1=0与圆x2+y2=4交于A,B两点,若在该圆上还存在一点C,使得$\overrightarrow{OC}=\overrightarrow{OA}+\overrightarrow{OB}$成立,则实数k的值为(  )
A.0B.$\frac{4}{3}$C.0或$\frac{4}{3}$D.0或$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若f(x)的图象如图所示,则有(  )
A.0<f'(3)<f'(4)<f(4)-f(3)B.0<f(4)-f(3)<f'(3)<f'(4)C.0<f'(4)<f'(3)<f(4)-f(3)D.0<f'(4)<f(4)-f(3)<f'(3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数y=f(x)是定义在(-∞,0)∪(0,+∞)上的偶函数,f(x)的导函数为f′(x)且当x>0时,xf′(x)-2f(x)<0,则一定成立的是(  )
A.16f(-3)>9f(4)B.16f(3)<9f(-4)C.9f(3)>16f(4)D.9f(-3)<16f(-4)

查看答案和解析>>

同步练习册答案