精英家教网 > 高中数学 > 题目详情
3.已知角α终边上一点P(-3,4),求$\frac{{cos({\frac{π}{2}+α})•sin({-π+α})}}{{cos({\frac{3π}{2}-α})•sin({\frac{9π}{2}+α})}}$的值.

分析 由条件利用任意角的三角函数的定义求出sinα和cosα的值,再利用诱导公式把要求的式子化简,从而求得结果.

解答 解:∵角α终边上一点P(-3,4),可得:r=|OP|=5,
∴sinα=$\frac{y}{r}$=$\frac{4}{5}$,cosα=$\frac{x}{r}$=-$\frac{3}{5}$,
∴$\frac{{cos({\frac{π}{2}+α})•sin({-π+α})}}{{cos({\frac{3π}{2}-α})•sin({\frac{9π}{2}+α})}}$=$\frac{sinα•(-sinα)}{(-sinα)•cosα}$=$\frac{\frac{4}{5}}{-\frac{3}{5}}$=-$\frac{4}{3}$.

点评 本题主要考查任意角的三角函数的定义,同角三角函数的基本关系、诱导公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.射手小张在一次射击中射中10环、9环、8环、7环、7环以下的概率分别是0.24、0.28、0.19、0.16、0.13,计算这个射手在一次射击中:
(1)射中10环或9环的概率;
(2)至少射中7环的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知在平面直角坐标系xoy中,直线x-ky+2k-1=0与圆x2+y2=4交于A,B两点,若在该圆上还存在一点C,使得$\overrightarrow{OC}=\overrightarrow{OA}+\overrightarrow{OB}$成立,则实数k的值为(  )
A.0B.$\frac{4}{3}$C.0或$\frac{4}{3}$D.0或$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若f(x)的图象如图所示,则有(  )
A.0<f'(3)<f'(4)<f(4)-f(3)B.0<f(4)-f(3)<f'(3)<f'(4)C.0<f'(4)<f'(3)<f(4)-f(3)D.0<f'(4)<f(4)-f(3)<f'(3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=2+sinx($\frac{π}{6}≤x≤\frac{2π}{3}$)的值域是[$\frac{5}{2}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)是以π为周期的奇函数,且当x∈[-$\frac{π}{2}$,0)时,f(x)=cos x,则f(-$\frac{5π}{3}$)=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.要使圆x2+y2+Dx+Ey+F=0与x轴的两个交点分别位于原点的两侧,则有(  )
A.D2+E2-4F>0,且F<0B.D<0,F>0
C.D≠0,F≠0D.F<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数y=f(x)是定义在(-∞,0)∪(0,+∞)上的偶函数,f(x)的导函数为f′(x)且当x>0时,xf′(x)-2f(x)<0,则一定成立的是(  )
A.16f(-3)>9f(4)B.16f(3)<9f(-4)C.9f(3)>16f(4)D.9f(-3)<16f(-4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,曲线C的方程为(x-1)2+(y-1)2=2,直线l的倾斜角为45°且经过点P(-1,0).
(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求曲线C的极坐标方程;
(2)设直线l与曲线C交于两点A,B,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

同步练习册答案