精英家教网 > 高中数学 > 题目详情
15.要使圆x2+y2+Dx+Ey+F=0与x轴的两个交点分别位于原点的两侧,则有(  )
A.D2+E2-4F>0,且F<0B.D<0,F>0
C.D≠0,F≠0D.F<0

分析 令y=0,则圆的方程为x2+Dx+F=0,将圆与x轴的相交问题,转化为方程x2+Dx+F=0的解的情况分析,根据一元二次方程的根与系数的关系,分析可得答案.

解答 解:∵x2+y2+Dx+Ey+F=0表示圆,则D2+E2-4F>0.
令y=0,则圆的方程为x2+Dx+F=0,
当D2>4F时,即方程有两解时,
则这个方程的两根为该圆与x轴的交点的横坐标,
根据题意,要求该圆与x轴的两个交点分别位于原点的两侧,
由根与系数的关系,有F<0,
且满足D2>4F,方程有两解的条件,
故选:A.

点评 本题考查圆的方程综合运用,注意圆与坐标轴的交点,可以令x或y的值为0,即可求得其与坐标轴交点的情况

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.$\frac{25}{4}$πB.C.$\frac{29}{4}$πD.$\frac{31}{4}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数y=logax+1(a>0,a≠1)恒过点(m,n),其中(m,n)满足方程3a2x+2b2y=a2b2,且a2+4b2=t,则t的最小值为14+4$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知角α终边上一点P(-3,4),求$\frac{{cos({\frac{π}{2}+α})•sin({-π+α})}}{{cos({\frac{3π}{2}-α})•sin({\frac{9π}{2}+α})}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在极坐标系中曲线C的极坐标方程为ρsin2θ-cosθ=0,点$M({1,\frac{π}{2}})$.以极点O为原点,以极轴为x轴正半轴建立直角坐标系.斜率为-1的直线l过点M,且与曲线C交于A,B两点.
(1)求曲线C和直线l的直角坐标方程;
(2)求两点A,B之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在极坐标系中,曲线C的方程为$ρ=4cosθ+2sinθ-\frac{3}{ρ}$,以极点O为原点,极轴为x轴的正半轴建立平面直角坐标系.
(Ⅰ)求曲线C的参数方程;
(Ⅱ)在直角坐标系中,点M(x,y)是曲线C上一动点,求x+y的最大值,并求此时点M的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若对?a∈[$\frac{1}{{e}^{2}}$,1],?b∈[-1,1],使λ+alna=2b2eb(e是自然对数的底数),则实数λ的取值范围是(  )
A.[$\frac{1}{e}$,2e]B.[$\frac{1}{e}$,$\frac{2}{e}$]C.[$\frac{3}{e}$,2e]D.[$\frac{3}{e}$,$\frac{8}{{e}^{2}}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示的多面体ABCDEF,四边形ABCD是边长为2的正方形,面BDFE⊥面ABCD,四边形BDFE为矩形,BE长为a,M为AE的中点,AC∩BD=O.
(1)求证:OM∥平面ADF;
(2)若BF⊥AE,求三棱锥E-BOM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$\frac{1+cos2α}{sin2α}=\frac{1}{2}$,则tanα=(  )
A.2B.3C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案