精英家教网 > 高中数学 > 题目详情
5.已知$\frac{1+cos2α}{sin2α}=\frac{1}{2}$,则tanα=(  )
A.2B.3C.$\frac{1}{2}$D.$\frac{1}{3}$

分析 由条件利用同角三角函数的基本关系,二倍角公式,即可计算得解.

解答 解:∵$\frac{1+cos2α}{sin2α}=\frac{1}{2}$,可得:$\frac{2co{s}^{2}α}{2sinαcosα}$=$\frac{cosα}{sinα}$=$\frac{1}{tanα}$=$\frac{1}{2}$,
∴解得:tanα=2.
故选:A.

点评 本题主要考查同角三角函数的基本关系,二倍角公式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.要使圆x2+y2+Dx+Ey+F=0与x轴的两个交点分别位于原点的两侧,则有(  )
A.D2+E2-4F>0,且F<0B.D<0,F>0
C.D≠0,F≠0D.F<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在四边形ABCD中,已知BC=2,DC=4,且∠A:∠ABC:∠C:∠ADC=3:7:4:10
(1)求BD的长;
(2)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,曲线C的方程为(x-1)2+(y-1)2=2,直线l的倾斜角为45°且经过点P(-1,0).
(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求曲线C的极坐标方程;
(2)设直线l与曲线C交于两点A,B,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(m,1),若向量$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$平行,则m=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在函数y=|x|(x∈[-2,2])的图象上有一点P(t,|t|),此函数的图象与x轴、直线x=-2及x=t围成的图形(如图阴影部分)的面积为S,则S与t的函数关系可表示为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设F1,F2是双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的两个焦点,点P在双曲线上,且∠F1PF2=60°,则|PF1||PF2|的值为(  )
A.36B.16$\sqrt{3}$C.16D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在各项不为零的等差数列{an}中,$a_7^2=2({a_3}+{a_{11}})$.数列{bn}是等比数列,且b7=a7则b6b8=(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,角A,B,C的对边分别是a,b,c,且满(2a-c)cosB=bcosC,则A的取值范围(  )
A.(0,$\frac{2π}{3}$)B.(0,π)C.($\frac{π}{3}$,$\frac{2π}{3}$)D.($\frac{2π}{3}$π)

查看答案和解析>>

同步练习册答案