精英家教网 > 高中数学 > 题目详情
10.在函数y=|x|(x∈[-2,2])的图象上有一点P(t,|t|),此函数的图象与x轴、直线x=-2及x=t围成的图形(如图阴影部分)的面积为S,则S与t的函数关系可表示为(  )
A.B.C.D.

分析 利用在y轴的右侧,S的增长会越来越快,切线斜率会逐渐增大,从而选出正确的选项.

解答 解:由题意知,当t>0时,S的增长会越来越快,
故函数S图象在y轴的右侧的切线斜率会逐渐增大,
故选:B.

点评 本题考查函数图象的变化特征,函数的增长速度与图象的切线斜率的关系,体现了数形结合的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在极坐标系中,曲线C的方程为$ρ=4cosθ+2sinθ-\frac{3}{ρ}$,以极点O为原点,极轴为x轴的正半轴建立平面直角坐标系.
(Ⅰ)求曲线C的参数方程;
(Ⅱ)在直角坐标系中,点M(x,y)是曲线C上一动点,求x+y的最大值,并求此时点M的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.比较sin$\frac{23π}{5}$与cos(-$\frac{17π}{4}$)的大小关系为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),F1、F2为椭圆的左右焦点,过F2斜率为k(k>0)的直线l与椭圆相交于M、N两点,△MF1N的周长为8,离心率为$\frac{1}{2}$.
(1)求椭圆的方程;
(2)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=-$\frac{17}{7}$(O为坐标原点),求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$\frac{1+cos2α}{sin2α}=\frac{1}{2}$,则tanα=(  )
A.2B.3C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=x2-2x,x∈[2,4],则f(x)的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,五面体ABCDE中,AB∥CD,CB⊥平面ABE,AE⊥AB,AB=AE=2,BC=$\sqrt{2}$,CD=1.
(1)求证:直线BD⊥AE;
(2)求证:直线BD⊥平面ACE;
(3)求DE与平面ABE所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.
(1)求证:PA∥面BDE;
(2)求证:BD⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$(α为参数),M是曲线C1上的动点,点P满足$\overrightarrow{OP}$=2$\overrightarrow{OM}$
(1)求点P的轨迹方程C2
(2)以O为极点,x轴正半轴为极轴的极坐标系中,射线$θ=\frac{π}{6}$与曲线C1、C2交于不同于极点的A、B两点,求|AB|.

查看答案和解析>>

同步练习册答案