精英家教网 > 高中数学 > 题目详情

【题目】设函数

(1)是函数的一个极值点,试求的单调区间;

(2),是否存在实数a,使得在区间上的最大值为4?若存在,求出实数a的值;若不存在,请说明理由.

【答案】(1)答案不唯一,见解析;(2)存在,

【解析】

1)确定函数的定义域,求出导函数,根据是极值点则得到,代入导函数消去,对参数分类讨论。

2)若可分析出函数的单调性,即可判定在区间的最大值为中的较大者,构造函数比较的大小,即可求出实数的值。

解:(1)函数的定义域为

是函数的一个极值点,

,即

①当时,令,,

的增区间为,减区间为

②当时,令,.

的增区间为减区间

③当时,不符合题意;

④当时,令,令

的增区间为减区间

2)当时,

,∴当,故为减函数

∴当时,最大值为中的较大者

在区间上为增函数,

故存在实数,使得在区间上的最大值为4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设集合.

(1),求实数的值;

(2),求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体,中,,过三点的平面D截去长方体的一个角后,得到如图所示的几何体.

(1)求几何体的体积;

(2)求直线与面所成角.(用反三角表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)若直线与圆相切,求被圆所截得弦长取最小值时直线的斜率;

2时,表示圆,问是否存在一条直线,使得它和所有的圆都没有公共点?如果存在,求出直线,若不存在,说明理由;

3)若满足不等式和等式的点集是一条线段,求取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)当a0时,求fx)的极值;

2)当a0时,讨论fx)的单调性;

3)若对任意的a∈2, 3),x1, x2∈[1, 3],恒有(mln3a2ln3|fx1)-fx2|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的中心在原点,为左、右焦点,焦距是实轴长的倍,双曲线过点.

1)求双曲线的标准方程;

2)若点在双曲线上,求证:点在以为直径的圆上;

3)在(2)的条件下,若直线交双曲线于另一点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数,且时,有,则不等式的解集为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为,其中为参数,在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为.

(1)求直线的直角坐标方程与曲线的普通方程;

(2)若是曲线上的动点,为线段的中点.求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为定义在实数集上的函数,把方程称为函数的特征方程,特征方程的两个实根),称为的特征根.

(1)讨论函数的奇偶性,并说明理由;

(2)已知为给定实数,求的表达式;

(3)把函数的最大值记作,最小值记作,研究函数的单调性,令,若恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案