【题目】已知
(![]()
(1)当a=0时,求f(x)的极值;
(2)当a>0时,讨论f(x)的单调性;
(3)若对任意的a∈(2, 3),x1, x2∈[1, 3],恒有(m-ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围.
科目:高中数学 来源: 题型:
【题目】请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得
四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm2
![]()
(1)若广告商要求包装盒侧面积S(cm
)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm
)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马
中,侧棱
底面
,且
,点
是
的中点,连接
、
、
.
![]()
(1)证明:
平面
;
(2)证明:
平面
.试判断四面体
是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;
(3)记阳马
的体积为
,四面体
的体积为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
,![]()
(1)若函数f(x)有两个零点,求实数a的取值范围;
(2)若a=3,且对任意的x1∈[-1,2],总存在
,使g(x1)-f(x2)=0成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某租车公司给出的财务报表如下:
年度 项目 | 2014年 (1-12月) | 2015年 (1-12月) | 2016年 (1-11月) |
接单量(单) | 14463272 | 40125125 | 60331996 |
油费(元) | 214301962 | 581305364 | 653214963 |
平均每单油费 | 14.82 | 14.49 | |
平均每单里程 | 15 | 15 | |
每公里油耗 | 0.7 | 0.7 | 0.7 |
有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为
.
(1)分别计算2014,2015年该公司的空驶率的值(精确到0.01%);
(2)2016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到11月30日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
.
(1)若
是函数
的一个极值点,试求
的单调区间;
(2)若
且
,是否存在实数a,使得
在区间
上的最大值为4?若存在,求出实数a的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
由方程
确定,下列结论正确的是________(请将你认为正确的序号都填上)
①
是
上的单调递减函数;
② 对于任意
,
恒成立;
③ 对于任意
,关于
的方程
都有解;
④
存在反函数
,且对任意
,总有
成立.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com