精英家教网 > 高中数学 > 题目详情

【题目】某租车公司给出的财务报表如下:

年度

项目

2014

1-12月)

2015

1-12月)

2016

1-11月)

接单量(单)

14463272

40125125

60331996

油费(元)

214301962

581305364

653214963

平均每单油费(元)

14.82

14.49

平均每单里程(公里)

15

15

每公里油耗(元)

0.7

0.7

0.7

有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为.

1)分别计算20142015年该公司的空驶率的值(精确到0.01%);

22016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到1130日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里).

【答案】1;(2元,公里.

【解析】

1)根据空驶率的计算公式为,带入计算即可;(2)根据T2016的值,求出k的值,从而求出2016年前11个月的平均每单油费和平均每单里程.

1

20142015年,该公司空驶率分别为41.14%38.00%

2T201638%20%18%

2016年前11个月的平均每单油费为12.98元,

平均每单里程为15.71km

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个玩具盘由一个直径为2米的半圆O和一个矩形ABCD构成,米,如图所示.小球从A点出发以5 V的速度沿半圆O轨道滚到某点E处后,经弹射器以6 V的速度沿与点E切线垂直的方向弹射到落袋区BC内,落点记为F.设弧度,小球从AF所需时间为T

1)试将T表示为的函数,并写出定义域;

2)当满足什么条件时,时间T最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点 ,则下面说法正确的是( )

A. B. C. D. 有极小值点,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,若,则称是“紧密数列”.

1)若数列是“紧密数列”,且,求的取值范围;

2)若为等差数列,首项,公差,且,判断是否为“紧密数列”,并说明理由;

3)设数列是公比为的等比数列,若数列都是“紧密数列”,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是三个不共线的向量,为给定向量,那么下列叙述中正确的是(

A.对任何非零实数及给定的向量,均存在唯一的实数,使得

B.对任何向量及给定的非零实数,均存在唯一的向量,使得

C.,则对任何实数,均存在单位向量和实数,使得

D.,则对任何实数,均存在单位向量和实数,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)当a0时,求fx)的极值;

2)当a0时,讨论fx)的单调性;

3)若对任意的a∈2, 3),x1, x2∈[1, 3],恒有(mln3a2ln3|fx1)-fx2|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线与圆相切,圆心的坐标为

1)求圆的方程;

2)设直线与圆没有公共点,求的取值范围;

3)设直线与圆交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知双曲线分别为的左,右顶点.

(1)以为圆心的圆与恰有三个不同的公共点,写出此圆的方程;

(2)直线过点,与在第一象限有公共点,线段的垂直平分线过点,求直线的方程;

(3)上是否存在异于,使成立,若存在,求出所有的坐标,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数(其中

1)求实数m的值;

2)已知关于x的方程在区间上有实数解,求实数k的取值范围;

3)当时,的值域是,求实数na的值.

查看答案和解析>>

同步练习册答案