精英家教网 > 高中数学 > 题目详情
14.如图,将一个半径适当的小球放入容器上方的入口处,小球自由下落,小球在下落的过程中,将遇到黑色障碍物3次,最后落入A区域或B区域中,已知小球每次遇到障碍物时,向左、右两边下落的概率都是$\frac{1}{2}$.
(1)分别求出小球落入A区域和B区域中的概率;
(2)若在容器入口处依次放入3个小球,记X为落入B区域中的小球个数,求X的分布列和数学期望.

分析 (1)记“小球落入A区域”为事件M,“小球落入B区域”为事件N,事件M的对立事件为事件N,小球落入A区域中当且仅当小球一直向左落下或一直向右落下,由此能分别求出小球落入A区域和B区域中的概率.
(2)由题意随机变量X的所有可能的取值为0,1,2,3,且X~B(3,-$\frac{3}{4}$),由此能求出X的分布列和数学期望.

解答 解:(1)记“小球落入A区域”为事件M,“小球落入B区域”为事件N,
则事件M的对立事件为事件N,
而小球落入A区域中当且仅当小球一直向左落下或一直向右落下,
故P(M)=$\frac{1}{8}+\frac{1}{8}$=$\frac{1}{4}$.
∴P(N)=1-P(M)=1-$\frac{1}{4}=\frac{3}{4}$.
(2)由题意随机变量X的所有可能的取值为0,1,2,3,且X~B(3,-$\frac{3}{4}$),
P(X=0)=${C}_{3}^{0}(\frac{1}{4})^{3}=\frac{1}{64}$,
P(X=1)=${C}_{3}^{1}(\frac{1}{4})^{2}(\frac{3}{4})$=$\frac{9}{64}$,
P(X=2)=${C}_{3}^{2}(\frac{1}{4})(\frac{3}{4})^{2}$=$\frac{27}{64}$,
P(X=3)=${C}_{3}^{3}(\frac{3}{4})^{3}$=$\frac{27}{64}$,
∵X的分布列为:

 X 01 2 3$\frac{27}{64}$
 P $\frac{1}{64}$ $\frac{9}{64}$ $\frac{27}{64}$ 
EX=$3×\frac{3}{4}$=$\frac{9}{4}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.椭圆经过$A(\sqrt{3},-2)$,$B(-2\sqrt{3},1)$,则该椭圆的标准方程为$\frac{{x}^{2}}{15}+\frac{{y}^{2}}{5}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知(x2-$\frac{1}{x}$)${\;}^{{n}^{\;}}$展开式的所有项的二项式系数和为32,则展开式中x4项的系数为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某人经营一个抽奖游戏,顾客花费3元钱可购买一次游戏机会,每次游戏中,顾客从标有黑1、黑2、黑3、黑4、红1、红3的6张卡片中随机抽取2张,并根据摸出的卡片的情况进行兑奖,经营者将顾客抽到的卡片分成以下类别:
A:同花顺,即卡片颜色相同且号码相邻;
B:同花,即卡片颜色相同.但号码不相邻;
C:顺子,即卡片号码相邻,但颜色不同;
D:对子,即两张卡片号码相同;
E:其他,即A,B,C,D以外的所有可能情况.
若经营者打算将以上五种类别中最不容易发生的一种类别对应中一等奖,最容易发生的一种类别对应顾客中二等奖,其他类别对应顾客中三等奖.
(1)一、二等奖分别对应哪一种类别(写出字母即可);
(2)若经营者规定:中一、二、三等奖,分别可以获得价值9元、3元、1元的奖品,假设某天参与游戏的顾客为300人次,试估计经营者这一天的盈利.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设等比数列{an}的前n项和为Sn,若${S_n}={2^n}-a$,则数列$\left\{{\frac{a_n}{{({{a_n}+a})({{a_{n+1}}+a})}}}\right\}$的前100项和为(  )
A.$\frac{{{2^{101}}-1}}{{{2^{100}}+1}}$B.$\frac{{{2^{100}}-1}}{{{2^{100}}+1}}$C.$\frac{{{2^{101}}-1}}{{2({{2^{101}}+1})}}$D.$\frac{{{2^{100}}-1}}{{2({{2^{100}}+1})}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,若输入t的值为5,则输出的s的值为(  )
A.$\frac{9}{16}$B.$\frac{5}{4}$C.$\frac{21}{16}$D.$\frac{11}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.cosx-$\sqrt{3}$sinx可以写成2sin(x+φ)的形式,其中0≤φ<2π,则φ=$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义在R上的函数f(x)满足$f(x)=\left\{\begin{array}{l}{{3}^{x-1},x≤0}\\{f(-x+3),x>0}\end{array}\right.$,则f(2016)=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在△ABC中,|$\overrightarrow{CA}$|=$\sqrt{6}$,|$\overrightarrow{CB}$|=2,∠ACB=75°,$\overline{AD}$=λ$\overrightarrow{DB}$
(1)若λ=1,求|$\overrightarrow{CD}$|的值;
(2)若$\overrightarrow{CD}$⊥$\overrightarrow{AB}$,求λ的值.

查看答案和解析>>

同步练习册答案