精英家教网 > 高中数学 > 题目详情

【题目】数列{an}的前n项和为Sn , a1=1,an+1=2Sn(n∈N*).
(Ⅰ)求数列{an}的通项an
(Ⅱ)求数列{nan}的前n项和Tn

【答案】解:(I)∵an+1=2Sn
∴Sn+1﹣Sn=2Sn
=3.
又∵S1=a1=1,
∴数列{Sn}是首项为1、公比为3的等比数列,Sn=3n1(n∈N*).
∴当n≥2时,an﹣2Sn1=23n2(n≥2),
∴an=
(II)Tn=a1+2a2+3a3+…+nan
当n=1时,T1=1;
当n≥2时,Tn=1+430+631+…+2n3n2 , ①3Tn=3+431+632+…+2n3n1 , ②
①﹣②得:﹣2Tn=﹣2+4+2(31+32+…+3n2)﹣2n3n1=2+2 =﹣1+(1﹣2n)3n﹣1
∴Tn= +(n﹣ )3n1(n≥2).
又∵Tn=a1=1也满足上式,∴Tn= +(n﹣ )3n1(n∈N*)
【解析】(I)利用递推公式an+1=2Sn把已知转化为Sn+1与Sn之间的关系,从而确定数列an的通项;(II)由(I)可知数列an从第二项开始的等比数列,设bn=n则数列bn为等差数列,所以对数列nan的求和应用乘“公比”错位相减.
【考点精析】本题主要考查了数列的前n项和和数列的通项公式的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在侧棱和底面垂直的三棱柱ABC﹣A1B1C1中,AB=1,AC= ,BC=2,AA1= ,点P为CC1的中点.
(1)求证:A1C⊥平面ABP;
(2)求平面ABP与平面A1B1P所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2acos2x+2 bsinxcosx,且f(0)=2,f( )= +1.
(1)求f(x)的最大值及单调递减区间;
(2)若α≠β,α,β∈(0,π),且f(α)=f(β),求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式(1﹣a)x2﹣4x+6>0的解集是{x|﹣3<x<1}.
(1)解不等式2x2+(2﹣a)x﹣a>0
(2)b为何值时,ax2+bx+3≥0的解集为R.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4—4:坐标系与参数方程】

将圆上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.

Ⅰ)写出C的参数方程;

设直线C的交点为,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段的中点且与垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2(2x+1)﹣
(1)证明:对任意的b∈R,函数f(x)=log2(2x+1)﹣ 的图象与直线y= +b最多有一个交点;
(2)设函数g(x)=log4(a﹣2x),若函数y=f(x)与函数y=g(x)的图象至少有一个交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=﹣x3+ax,其中a∈R,g(x)=﹣ x ,且f(x)<g(x)在(0,1]上恒成立.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某城市有一块半径为40m的半圆形O为圆心,AB为直径绿化区域,现计划对其进行改建.在AB的延长线上取点D,使OD=80m,在半圆上选定一点C,改建后的绿化区域由扇形区域AOC和三角形区域COD组成,其面积为S m2. 设∠AOC=x rad.

(1)写出S关于x的函数关系式S(x),并指出x的取值范围;

(2)张强同学说:当∠AOC=时,改建后的绿化区域面积S最大.张强同学的说法正确吗?若不正确,请求出改建后的绿化区域面积S最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|< )的最小正周期为2 π,最小值为﹣2,且当x= 时,函数取得最大值4. (I)求函数 f(x)的解析式;
(Ⅱ)求函数f(x)的单调递增区间;
(Ⅲ)若当x∈[ ]时,方程f(x)=m+1有解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案