精英家教网 > 高中数学 > 题目详情
17.一个直径为6cm的铁球浸于一个圆柱形容器中,容器内底部半径为6cm,若取出铁球,则容器的水面下降多少厘米.

分析 设容器的水面下降x厘米,由球的体积公式,圆柱的体积公式,建立关系式并解之,即可得到水面下降的高度.

解答 解:设容器的水面下降x厘米,则$π•{6}^{2}•x=\frac{4}{3}π•{3}^{3}$,
∴x=1,
∴容器的水面下降1厘米.

点评 本题从圆柱形容器中取出小球,求水面下降的高度,着重考查了球体积公式和圆柱体积公式等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如(图1),直角梯形ABCD中,AB∥CD,∠BAD=90°,AB=AD=2,CD=4,点E为线段AB的中点,且EF∥AD,沿EF将面EBCF折起,使平面EBCF⊥平面AEFD,如(图2).
(Ⅰ)求证:DF⊥BC;
(Ⅱ)求平面ABC与平面AEFD所成的锐二面角的余弦值;
(Ⅲ)在棱AC上是否存在一点M,使直线FM与平面ABC所成角的正弦值为$\frac{{\sqrt{42}}}{7}$,若存在求出点M的一个坐标,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.执行如图的程序框图,若输出$s=\frac{127}{128}$,则输入p=(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设Sn为数列{an}的前n项和,数列{an}满足a1=a,${S_n}=({2^n}-1){a_n}$,其中a<0.
(1)求数列{an}的通项公式;
(2)设${b_n}={a_n}-{log_2}\frac{a_n}{a_1}$,Tn为数列{bn}的前n项和,若当且仅当n=4时,Tn取得最小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{1}{3}{x^3}-(2k+1){x^2}$+3k(k+2)x+1,其中k为实数.
(1)当k=-1时,求函数f(x)在[0,6]上的最大值和最小值;
(2)求函数f(x)的单调区间;
(3)若函数f(x)的导函数f'(x)在(0,6)上有唯一的零点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}、{bn}都是公差为1的等差数列,b1是正整数,若a1+b1=10,则a${\;}_{{b}_{1}}$+a${\;}_{{b}_{2}}$+…+a${\;}_{{b}_{9}}$=(  )
A.81B.99C.108D.117

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义:区间[x1,x2](x1<x2)的长度为x2-x1,已知函数y=2|x|的定义域为[a,b],值域为[1,2],记区间[a,b]的最大长度为m,最小长度为n.则函数g(x)=mx-(x+2n)的零点个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知m,n为两条不同的直线,α,β,γ为三个不同的平面,则下列命题中正确的是(  )
A.若m∥n,m?α,则n∥αB.若m∥n,m?α,n?β,则α∥β
C.若α⊥β,α⊥γ,则β∥γD.若m∥n,m⊥α,n⊥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知曲线C:x2-xy+y2=3,矩阵$M=({\begin{array}{l}{\frac{{\sqrt{2}}}{2}}&{\frac{{\sqrt{2}}}{2}}\\{-\frac{{\sqrt{2}}}{2}}&{\frac{{\sqrt{2}}}{2}}\end{array}})$,且曲线C在矩阵M对应的变换的作用下得到曲线C′.
(Ⅰ)求曲线C′的方程;
(Ⅱ)求曲线C的离心率以及焦点坐标.

查看答案和解析>>

同步练习册答案