精英家教网 > 高中数学 > 题目详情
5.某货轮在A处看灯塔S在北偏东30°,它以每小时36海里的速度向正北方向航行,40分钟航行到B处,看灯塔S在北偏东75°,求这时货轮到灯塔S的距离.

分析 由题意及方位角的定义,根据草图,在三角形ABS中并利用正弦定理得到:$\frac{SB}{sinA}=\frac{AB}{sinS}$,解得BS边即可.

解答 解:$AB=36×\frac{2}{3}=24海里$∠A=30°,∠S=45°
由正弦定理可得,$\frac{SB}{sinA}=\frac{AB}{sinS}$,
∴$\frac{SB}{{\frac{1}{2}}}=\frac{24}{{\frac{{\sqrt{2}}}{2}}}$,解得$SB=12\sqrt{2}海里$,
此时,货轮到灯塔S的距离为$12\sqrt{2}海里$.

点评 本题的考点是解三角形的实际应用,主要考查了学生理解题意的能力,还考查了利用图形分析问题解决问题及准确使用正弦定理求解三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设a为实数,函数f(x)=x2-ax.
(1)若函数f(x)在[2,4]上具有单调性,求实数a的取值范围;
(2)设h(a)为f(x)在[2,4]上的最小值,求h(a).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在Rt△ABC中,C=$\frac{π}{2}$,B=$\frac{π}{6}$,CA=2,则|2$\overrightarrow{AC}$-$\overrightarrow{AB}$|=(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等差数列{an}满足Sn=-$\frac{{n}^{2}}{2}$+$\frac{3n}{2}$.
(1)求{an}的通项公式;
(2)求数列{$\frac{{a}_{n}}{{2}^{n-1}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在平面直角坐标系中,角α与角β均以Ox为始边,它们的终边关于x轴对称,若$cosα=\frac{{\sqrt{2}}}{3}$,则cos(α-β)=$-\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.△ABC的内角A,B,C所对的边长分别为a,b,c,cos A=$\frac{12}{13}$,且c-b=1,bc=156,则a的值为(  )
A.3B.5C.2$\sqrt{6}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数$y={x^2}+\frac{1}{x^2}$的图象关于(  )对称.
A.原点B.直线y=-xC.y轴D.直线y=x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=ax2+(a-2)x-2(a∈R).
(1)解关于x的不等式f(x)≥0;
(2)若a>0,当-1≤x≤1时,f(x)≤0恒成立,求实数a的取值范围;
(3)若当-1<a<1时,f(x)>0恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)的定义域为[-1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示
x-1045
f(x)1221
下列关于f(x)的命题
①函数f(x)的极大值点为0,4
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④函数f(x)在x=0处的切线斜率小于零
其中正确命题的序号是①②.

查看答案和解析>>

同步练习册答案