精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)的定义域为[-1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示
x-1045
f(x)1221
下列关于f(x)的命题
①函数f(x)的极大值点为0,4
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④函数f(x)在x=0处的切线斜率小于零
其中正确命题的序号是①②.

分析 由f(x)的导函数y=f′(x)的图象可知:函数f(x)在区间[-1,0),[2,4]上单调递增;在区间[0,2),(4,5]上单调递减.f′(0)=0.即可判断出正误.

解答 解:由f(x)的导函数y=f′(x)的图象可知:函数f(x)在区间[-1,0),[2,4]上单调递增;在区间[0,2),(4,5]上单调递减.因此函数f(x)的极大值点为0,4;如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为5;f′(0)=0.
因此只有①②正确.
故答案为:①②.

点评 本题考查了利用导数研究函数的单调性极值与最值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.某货轮在A处看灯塔S在北偏东30°,它以每小时36海里的速度向正北方向航行,40分钟航行到B处,看灯塔S在北偏东75°,求这时货轮到灯塔S的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°、距灯塔68海里的M处,下午2时到达这座灯塔南偏东45°的N处,则该船航行的速度为(单位:海里/小时)(  )
A.$\frac{17\sqrt{2}}{2}$B.34$\sqrt{6}$C.$\frac{17\sqrt{6}}{2}$D.34$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)计算:$\root{3}{(-4)^{3}}$-($\frac{1}{2}$)0+0.25${\;}^{\frac{1}{2}}$×($\frac{-1}{\sqrt{2}}$)-4
(2)已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,求$\frac{{x}^{2}+{x}^{-2}-2}{x+{x}^{-1}-3}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A(0,-1),且离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如表是某初中1000名学生的肥胖情况,其中表格中有三个数据被墨水浸泡,数据看不清楚,已知从这批学生中随机抽取1名学生,抽到偏瘦男生的比例为$\frac{3}{20}$,若用分层抽样的方法,从这批学生中随机抽取50名,偏胖学生中应该抽取20人
 偏瘦正常 肥胖 
 女生(人) 100173 
 男生(人)177

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知平面α与β所成的二面角为70°,P为α,β外一定点,则过点P的一条直线与α、β所成的角都是35°,则这样的直线有且仅有(  )
A.1条B.3条C.4条D.无数条

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1的渐近线方程为(  )
A.y=$±\frac{1}{2}$xB.y=$±\sqrt{3}$xC.y=$±\frac{\sqrt{3}}{2}$xD.y=$±\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$\underset{lim}{x→-2}$$\frac{{x}^{2}+ax+b}{{x}^{2}+x-2}$=-1,则a,b的值为(  )
A.a=7,b=10B.a=7,b=-10C.a=-7,b=10D.a=-7,b=-10

查看答案和解析>>

同步练习册答案