精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+x2-ax,其中a∈R,x∈R.
(1)当a=1时,求函数f(x)在x=1处的切线方程;
(2)若函数f(x)在区间(1,2)上不是单调函数,试求a的取值范围;
(3)已知b>-1,如果存在a∈(-∞,-1],使得函数h(x)=f(x)+f′(x)(x∈[-1,b])在x=-1处取得最小值,试求b的最大值.
分析:(1)求导数,求出切线斜率,切点坐标,即可求函数f(x)在x=1处的切线方程;
(2)若函数f(x)在区间(1,2)上不是单调函数,则3ax2+2x-a=0在区间(1,2)上有解,分离参数,求值域,即可得出结论;
(3)由h(x)=ax3+(3a+1)x2+(2-a)x-a,知h(x)≥h(-1)在区间[-1,b]上恒成立,令?(x)=ax2+(2a+1)x+(1-3a),由a∈(-∞,-1]知其图象是开口向下的抛物线,故它在闭区间的最小值必在区间端点处取得,从而可得φ(b)≥0,由此能求出b的最大值.
解答:解:(1)当a=1时,f(x)=x3+x2-x,∴f′(x)=3x2+2x-1,
x=1时,f′(1)=4,f(1)=1,
∴函数f(x)在x=1处的切线方程为y-1=4(x-1),即4x-y-3=0;
(2)∵f(x)=ax3+x2-ax,∴f′(x)=3ax2+2x-a
∵函数f(x)在区间(1,2)上不是单调函数,
∴3ax2+2x-a=0在区间(1,2)上有解,
由3ax2+2x-a=0,可得a=
2x
1-3x2
,则a′=
2+6x2
(1-3x2)2
>0,
∴a=
2x
1-3x2
在区间(1,2)上单调递增,
∴a∈(-1,-
4
11
);
(3)由题意,g(x)=ax3+(3a+1)x2+(2-a)x-a,
据题知,h(x)≥h(-1)在区间[-1,b]上恒成立,
即:(x+1)(ax2+(2a+1)x+(1-3a))≥0…①
当x=-1时,不等式①成立;
当-1<x≤b时,不等式①可化为ax2+(2a+1)x+(1-3a)≥0…②
令φ(x)=ax2+(2a+1)x+(1-3a),由a∈(-∞,-1]知其图象是开口向下的抛物线,
故它在闭区间的最小值必在区间端点处取得.
又φ(-1)=-4a>0,故不等式②成立的充要条件是φ(b)≥0,
整理得:
b2+2b-3
b+1
≤-
1
a
在a∈(-∞,-1]上有解,
b2+2b-3
b+1
≤1,
∴-1<b≤
17
-1
2

∴实数b的最大值为
17
-1
2
点评:本题考查导数的几何意义,考查函数的单调性与其导函数的正负之间的关系,考查了有关不等式恒成立的问题,对于恒成立问题,一般选用参变量分离法、最值法、数形结合法求解,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案