精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3-bx2+x(a,b∈R且ab≠0)的图象如图,且|x1|>|x2|,则有(  )
精英家教网
A、a>0,b>0B、a<0,b<0C、a>0,b<0D、a<0,b>0
分析:由图知二个零点x1,x2.从而得导函数f′(x)=3ax2-2bx+1的图象是开口向下、与x轴交于点(x1,0)、(x2,0)的抛物线,又由图得a<0,从而可以判断a,b,c的符号.
解答:解:由图象可知:
x (-∞,x1 x1 (x1,x2 x2 (x2,+∞)
f(x) 极小值 极大值
f′(x) - 0 + 0 -
∴导函数f′(x)=3ax2-2bx+1的图象是开口向下、与x轴交于点(x1,0)、(x2,0)的抛物线
∴a<0,x1+x2=
2b
3a

由x1<0,x2>0,且|x1|>|x2|知:x1+x2=
2b
3a
<0
∴b>0
故选D.
点评:本题考查函数的零点,三次函数的图象,以及利用图象解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案