精英家教网 > 高中数学 > 题目详情
9.若函数f(x)=-loga(x3+1)(a>0,a≠1)的定义域和值域都是[0,1],则a=(  )
A.$\frac{1}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.2

分析 根据对数函数的性质得到题中函数在[0,1]上是单调函数,结合f(0)=-loga1=0可得f(x)是增函数且f(1)=1.由此建立关于a的方程,解之即可得出实数a的值.

解答 解:根据对数函数的性质,可得函数f(x)=-loga(x3+1)在[0,1]上是单调函数,
∵函数f(x)=-loga(x3+1)满足f(0)=-loga1=0,
∴由函数的定义域和值域都是[0,1],
得函数f(x)是增函数且f(1)=1.
即-loga(1+1)=1,a=$\frac{1}{2}$,
故选:A.

点评 本题主要通过函数间的转化,来考查对数函数的定义域,值域及其单调性,还考查了转化和分类讨论思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知点A(sinθ,1),B(cosθ,0),C(-sinθ,2),且$\overrightarrow{AB}=\overrightarrow{BP}$.
(Ⅰ)记函数$f(θ)=\overrightarrow{BP}•\overrightarrow{CA}$,$θ∈(-\frac{π}{8},\frac{π}{2})$,讨论函数的单调性,并求其值域;
(Ⅱ)若O,P,C三点共线,求$|\overrightarrow{OA}+\overrightarrow{OB}|$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知底面边长为$\sqrt{3}$的正三棱柱ABC-A1B1C1的体积为$\frac{9}{4}$,若点P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设Sn为数列{an}的前n项和,若Sn=nan-3n(n-1)(n∈N*),且a2=11,则S20的值为1240.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.定义:从一个数列{an}中抽取若干项(不少于三项)按其在{an}中的次序排列的一列数叫做{an}的子数列,成等差(比)的子数列叫做{an}的等差(比)子列.
(1)求数列1,$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,$\frac{1}{5}$的等比子列;
(2)设数列{an}是各项均为实数的等比数列,且公比q≠1.
(i)试给出一个{an},使其存在无穷项的等差子列(不必写出过程);
(ii)若{an}存在无穷项的等差子列,求q的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,F是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的右焦点,过F作渐近线的垂线,垂足为P,与另一条渐近线相交于Q,若|PF|=|PQ|,则C的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,0),若(λ$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则实数λ的值为(  )
A.-5B.-$\frac{2}{5}$C.-$\frac{3}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题中正确命题的个数是(  )
①对于命题P:存在x∈R,使得x2+x-1<0,则﹁P:任意x∈R,均有x2+x-1>0
②命题“若x=y,则sinx=siny”的逆否命题为真命题
③“m=-1”是“直线l1:mx+(2m-1)y+1=0与直线l2:3x+my+3=0垂直”的充要条件.
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,且|$\overrightarrow{b}$|=2,$\overrightarrow{b}$$•(2\overrightarrow{a}-\overrightarrow{b})$=0,则|$\overrightarrow{a}$|的最小值为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

同步练习册答案