精英家教网 > 高中数学 > 题目详情
4.等差数列{an}的前n项和为Sn,a22-3a7=2,且$\frac{1}{a_2}$,$\sqrt{{S_2}-3}$,S3成等比数列,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=$\frac{2}{{{a_n}{a_{n+2}}}}$,数列{bn}的前n项和为Tn,若对于任意的n∈N*,都有8Tn<2λ2+5λ成立,求实
数λ的取值范围.

分析 (I)利用等差数列与等比数列的通项公式及其前n项和公式即可得出;
(II)利用“裂项求和”方法、数列的单调性即可得出.

解答 解:(Ⅰ)设等差数列{an}的公差为d
由$\left\{{\begin{array}{l}{{a_{22}}-3{a_7}=2}\\{{{(\sqrt{{S_2}-3})}^2}=\frac{1}{a_2}•{S_3}}\end{array}}\right.$$⇒\left\{{\begin{array}{l}{({a_1}+21d)-3({a_1}+6d)=2}\\{(2{a_1}+d-3)•({a_1}+d)=3{a_1}+3d}\end{array}}\right.$,
即$\left\{{\begin{array}{l}{-2{a_1}+3d=2}\\{({a_1}+d)(2{a_1}+d-6)=0}\end{array}}\right.$,
解得:$\left\{{\begin{array}{l}{{a_1}=2}\\{d=2}\end{array}}\right.$,或 $\left\{{\begin{array}{l}{{a_1}=-\frac{2}{5}}\\{d=\frac{2}{5}}\end{array}}\right.$,
当${a_1}=-\frac{2}{5}$,$d=\frac{2}{5}$时,$\sqrt{{S_2}-3}=\sqrt{-\frac{17}{5}}$没有意义,
∴a1=2,d=2,此时an=2+2(n-1)=2n.
(Ⅱ)${b_n}=\frac{2}{{{a_n}{a_{n+2}}}}=\frac{1}{2n(n+2)}=\frac{1}{4}(\frac{1}{n}-\frac{1}{n+2})$,
Tn=b1+b2+b3+…+bn=$\frac{1}{4}(\frac{1}{1}-\frac{1}{3})+\frac{1}{4}(\frac{1}{2}-\frac{1}{4})+\frac{1}{4}(\frac{1}{3}-\frac{1}{5})+\frac{1}{4}(\frac{1}{4}-\frac{1}{6})+\frac{1}{4}(\frac{1}{5}-\frac{1}{7})+\frac{1}{4}(\frac{1}{6}-\frac{1}{8})$$+…+\frac{1}{4}(\frac{1}{n-1}-\frac{1}{n+1})+\frac{1}{4}(\frac{1}{n}-\frac{1}{n+2})$=$\frac{1}{4}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})=\frac{3}{8}-\frac{1}{4}(\frac{1}{n+1}+\frac{1}{n+2})$,
∴$8{T_n}=3-2(\frac{1}{n+1}+\frac{1}{n+2})<3$,
为满足题意,必须2λ2+5λ≥3,∴$λ≥\frac{1}{2}$或λ≤-3.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、“裂项求和”方法、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知命题p:?x∈R,sin2x≤1,则(  )
A.¬p:?x0∈R,sin2x0≥1B.¬p:?x∈R,sin2x≥1
C.¬p:?x0∈R,sin2x0>1D.¬p:?x∈R,sin2x>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C的对边分别是a,b,c,已知向量$\overrightarrow{m}$=(cosB,cosC),$\overrightarrow{n}$=(4a-b,c),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求cosC的值;
(2)若c=$\sqrt{3}$,△ABC的面积S=$\frac{{\sqrt{15}}}{4}$,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设集合M={x|$\frac{1+x}{3-x}$≥0},N={x|2x≥1},则M∩N=[0,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,角A、B,C所对的边分别为a、b、c且满足asinB=b,则当$\sqrt{2}$sinB+sinC取得最大值时,cosB的值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=2sin2xcosφ+2cos2xsinφ+m(0<φ<$\frac{π}{2}$),且f(x)的图象上的一个最低点为M($\frac{2}{3}π$,-1).
(1)求f(x)的解析式;
(2)已知f($\frac{α}{2}}$)=$\frac{1}{3}$,α∈[0,π],求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和为Sn,a1=2,对任意的n∈N*都有an+1=3an+3n+1-2n,记bn=$\frac{{{a_n}-{2^n}}}{3^n}$(n∈N*).
(1)求证:数列{bn}为等差数列;
(2)求Sn
(3)证明:存在k∈N*,使得$\frac{{{a_{n+1}}}}{a_n}$≤$\frac{{{a_{k+1}}}}{a_k}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.2013年底某市有人口100万,人均占有绿地面积为9.8m2,计划五年内(到2018年底)人均绿地面积增加15%,如该市在此期间,每年人口平均增长率为17‰,则该市每年平均要新增绿地面积多少?(结果精确到0.01万m2)(人均绿地面积=$\frac{绿地总面积}{人口总数}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.将函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象向右平移$\frac{π}{12}$个单位后的图象关于y轴对称,则函数f(x)在[0,$\frac{π}{2}$]上的最小值为-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案