精英家教网 > 高中数学 > 题目详情
在△ABC中,a,b,c分别是角A,B,C的对边,若A=
π
4
,b=2
2
,△ABC的面积为2,则a的值为(  )
A、2
2
B、
2
C、2
D、2
3
考点:余弦定理,正弦定理
专题:解三角形
分析:利用三角形的面积求出c,然后利用余弦定理求出a.
解答: 解:在△ABC中,a,b,c分别是角A,B,C的对边,若A=
π
4
,b=2
2
,△ABC的面积为2,
所以S=
1
2
bcsinA=2
,即
1
2
×2
2
×
2
2
c=2

解得c=2,
由余弦定理可知:a2=b2+c2-2bccosA=8+4-2×2
2
×2×
2
2
=4,
所以a=2.
故选:C.
点评:本题考查三角形的解法,正弦定理以及余弦定理的应用,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=(a2+a)x2+2bx+3a+b是奇函数,且定义域为[a,2-a2],则a=
 
,b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2x-1,对于满足0<x1<x2的任意实数x1、x2,给出下列结论:
①[f(x2)-f(x1)](x1-x2)<0;
②x2f(x1)>x1f(x2);
③f(x2)-f(x1)>x2-x1
f(x1)+f(x2)
2
<f(
x1+x2
2
).
其中正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c成等比数列,则二次函数f(x)=ax2+bx+c的图象与x轴交点个数是(  )
A、0B、0或1C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

i为虚数单位,
1-
3
i
(
3
+i)2
=(  )
A、
1
4
+
3
4
i
B、
1
2
+
3
2
i
C、-
1
2
-
3
2
i
D、-
1
4
-
3
4
i

查看答案和解析>>

科目:高中数学 来源: 题型:

与不等式
2x-3
x-2
≥1同解的不等式是(  )
A、x-1≥0
B、x2-3x+2≥0
C、lg(x2-3x+2)>0
D、
x3-x2+x-1
x-2
≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义运算a?b=
b(a≥b)
a(a<b)
,则函数f(x)=3x?3-x的值域是(  )
A、[1,+∞)
B、(0,1]
C、(0,+∞)
D、(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导函数为f′(x),f′(x)没有零点且图象是连续不断的曲线,又f(x-2012)的图象关于点(2012,0)对称.若函数定义域内的三个值a、b、c足(a+b)(b+c)>0,(a+b)(c+a)>0,则f(a)+f(b)+f(c)的值(  )
A、大于零B、小于零
C、等于零D、正负都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2•a8=4a5,等差数列{bn}中,b4+b6=a5,则数列{bn}的前9项和S9等于(  )
A、9B、18C、36D、72

查看答案和解析>>

同步练习册答案