精英家教网 > 高中数学 > 题目详情
9.对于函数f(x)=1og${\;}_{\frac{1}{2}}$(x+a).
(1)若函数的定义域为(-1,∞),求实数a;
(2)若a=1,解不等式f(x)>0.

分析 (1)求解函数的定义域,结合函数的定义域为(-1,+∞)可得a的值;
(2)直接求解对数不等式得答案.

解答 解:(1)由x+a>0,得x>-a,
又函数f(x)=1og${\;}_{\frac{1}{2}}$(x+a)的定义域为(-1,∞),
∴-a=-1,即a=1;
(2)当a=1时,不等式f(x)>0化为1og${\;}_{\frac{1}{2}}$(x+1)>0,
即0<x+1<1,解得-1<x<0.
∴不等式f(x)>0的解集为(-1,0).

点评 本题考查函数的定义域及其求法,考查了对数不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知$|\overrightarrow{OA}|=|\overrightarrow{OB}|=1$,$∠AOB=\frac{2π}{3}$,$\overrightarrow{OP}$=$2\overrightarrow{OA}+t\overrightarrow{OB}$,则$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影的取值范围$(-\frac{1}{2},1]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.(文)函数y=cos2ax-sin2ax的最小正周期为π,则a的值是±1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项的和Sn=$\frac{3}{2}$n2-$\frac{1}{2}$n.
(1)求{an}的通项公式an
(2)当n≥2时,an+1+$\frac{λ}{{a}_{n}}$≥λ恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在三棱台A1B1C1-ABC中,点D在A1B1上,且AA1∥BD,点M是△A1B1C1内(含边界)的一个动点,且有平面BDM∥平面A1C,则动点M的轨迹是(  )
A.平面B.直线
C.线段,但只含1个端点D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知cos(α+β)cosα+sin(α+β)sinα=$\frac{1}{3}$,β∈($\frac{3π}{2}$,2π),求cos(β-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数a,b,c,d满足$\frac{2+5alna}{2{a}^{2}-ab}$=$\frac{{c}^{2}-mc}{d-4}$=1,在直角坐标系中,点(a,b)和(c,d)的轨迹方程分别为y=f(x),y=g(x),若?x1∈(0,1),?x2∈[1,2],郡有f(x1)≥g(x2)成立,则实数m的最小值为(  )
A.$\frac{11-5ln2}{2}$B.2C.8-5ln2D.7-5ln2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设三棱锥的三条侧棱两两互相垂直,且长度分别为2,2$\sqrt{3}$,4,则其外接球的表面积为(  )
A.48πB.32πC.20πD.12π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知a+a-1=m,则$\frac{{a}^{2}+1}{a}$的值是m.

查看答案和解析>>

同步练习册答案