精英家教网 > 高中数学 > 题目详情
19.已知$|\overrightarrow{OA}|=|\overrightarrow{OB}|=1$,$∠AOB=\frac{2π}{3}$,$\overrightarrow{OP}$=$2\overrightarrow{OA}+t\overrightarrow{OB}$,则$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影的取值范围$(-\frac{1}{2},1]$.

分析 由已知求出$\overrightarrow{OA}•\overrightarrow{OP}$,再求出$|\overrightarrow{OP}|$,代入投影公式,转化为关于t的函数,利用换元法结合配方法求得$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影的取值范围.

解答 解:∵$\overrightarrow{OP}$=$2\overrightarrow{OA}+t\overrightarrow{OB}$,且$|\overrightarrow{OA}|=|\overrightarrow{OB}|=1$,$∠AOB=\frac{2π}{3}$,
∴$\overrightarrow{OA}•\overrightarrow{OP}=\overrightarrow{OA}•(2\overrightarrow{OA}+t\overrightarrow{OB})$=$2|\overrightarrow{OA}{|}^{2}+t|\overrightarrow{OA}||\overrightarrow{OB}|cos\frac{2π}{3}$=$2+(-\frac{1}{2})t$=$2-\frac{t}{2}$.
$|\overrightarrow{OP}{|}^{2}=(2\overrightarrow{OA}+t\overrightarrow{OB})^{2}$=$4|\overrightarrow{OA}{|}^{2}+4t|\overrightarrow{OA}||\overrightarrow{OB}|cos\frac{2π}{3}+{t}^{2}|\overrightarrow{OB}{|}^{2}$=4-2t+t2
∴$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影等于$\frac{\overrightarrow{OA}•\overrightarrow{OP}}{|\overrightarrow{OP}|}$=$\frac{2-\frac{t}{2}}{\sqrt{4-2t+{t}^{2}}}=\frac{1}{2}•\frac{4-t}{\sqrt{4-2t+{t}^{2}}}$.
令4-t=m,则t=4-m,t2=16-8m+m2
∴上式=f(m)=$\frac{1}{2}•\frac{m}{\sqrt{{m}^{2}-6m+12}}$.
当m=0时,f(m)=0;
当m>0时,f(m)=$\frac{1}{2}•\sqrt{\frac{{m}^{2}}{{m}^{2}-6m+12}}$=$\frac{1}{2}\sqrt{\frac{1}{12(\frac{1}{{m}^{2}})-6(\frac{1}{m})+1}}$∈(0,1];
当m<0时,f(m)=-$\frac{1}{2}•\sqrt{\frac{{m}^{2}}{{m}^{2}-6m+12}}$=-$\frac{1}{2}\sqrt{\frac{1}{12(\frac{1}{{m}^{2}})-6(\frac{1}{m})+1}}$∈($-\frac{1}{2}$,0).
综上,$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影的范围为(-$\frac{1}{2}$,1].
故答案为:(-$\frac{1}{2}$,1].

点评 本题考查向量在几何中的应用,综合考查向量的线性运算,向量的数量积的运算及数量积公式,熟练掌握向量在向量上的投影是解题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.如图所示,正方体的棱长为2,C、D分别是两条棱的中点,A、B、M是顶点,那么M到截面ABCD的距离是$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=sinxsin(x+$\frac{π}{3}$)+sin2x,x∈(-$\frac{π}{2}$,$\frac{π}{4}$)的值域为[$\frac{3-2\sqrt{3}}{4}$,$\frac{3+2\sqrt{3}}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在极坐标系中,动点P(p,θ)运动时,ρ与sin(θ+$\frac{π}{4}$)成正比,动点P的轨迹C经过点(2,0),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=m+t}\\{y=2+\frac{t}{2}}\end{array}\right.$(t为参数).
(Ⅰ)将动点P的轨迹C的极坐标方程化为直角坐标方程;
(Ⅱ)若直线l与曲线C相交得到的弦长为$\frac{2\sqrt{30}}{5}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义一个对应法则f:P(m,n)→P′$(\sqrt{m},\sqrt{n})$,(m≥0,n≥0).现有点A(3,9)与点B(9,3),点M是线段AB上一动点,按定义的对应法则f:M→M′.当点M在线段AB上从点A开始运动到点B结束时,点M的对应点M′所经过的路线长度为$\frac{\sqrt{3}π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{tanxtan2x}{tan2x-tanx}$+$\sqrt{3}$(sin2x-cos2x),
(1)把f(x)的表达式化简为Asin(ωx+φ)的形式;
(2)求f(x)在[0,π]的单凋递减区间和最大值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.
(1)设一次订购量为x件,服装的实际出厂单价为P元,写出函数P=f(x)的表达式;
(2)当销售商一次订购多少件时,该服装厂获得的利润最大,最大利润是多少元?
(服装厂售出一件服装的利润=实际出厂单价-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$(a>1)
(Ⅰ)判断函数的奇偶性;
(Ⅱ)判断其单调性;
(Ⅲ)求其值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.对于函数f(x)=1og${\;}_{\frac{1}{2}}$(x+a).
(1)若函数的定义域为(-1,∞),求实数a;
(2)若a=1,解不等式f(x)>0.

查看答案和解析>>

同步练习册答案