精英家教网 > 高中数学 > 题目详情
7.在极坐标系中,动点P(p,θ)运动时,ρ与sin(θ+$\frac{π}{4}$)成正比,动点P的轨迹C经过点(2,0),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=m+t}\\{y=2+\frac{t}{2}}\end{array}\right.$(t为参数).
(Ⅰ)将动点P的轨迹C的极坐标方程化为直角坐标方程;
(Ⅱ)若直线l与曲线C相交得到的弦长为$\frac{2\sqrt{30}}{5}$,求实数m的值.

分析 (Ⅰ)由题意可得ρ=ksin(θ+$\frac{π}{4}$),代入点的坐标求得k值,可得曲线的极坐标方程,结合ρ2=x2+y2,x=ρcosθ,y=ρsinθ求得曲线C的直角坐标方程;
(Ⅱ)化直线的参数方程为普通方程,结合弦长及圆的半径求出圆心到直线的距离,再由点到直线的距离公式求得m的值.

解答 解:(Ⅰ)由题意可知,ρ=ksin(θ+$\frac{π}{4}$),
把点(2,0)代入得:$2=ksin\frac{π}{4}=\frac{\sqrt{2}}{2}k$,∴k=2$\sqrt{2}$.
则$ρ=2\sqrt{2}sin(θ+\frac{π}{4})$.
化为直角坐标方程:即${ρ}^{2}=2\sqrt{2}ρ(sinθ•cos\frac{π}{4}+cosθ•sin\frac{π}{4})$.
∴x2+y2=2y-2x.
即(x+1)2+(y-1)2=2;
(Ⅱ)由$\left\{\begin{array}{l}{x=m+t}\\{y=2+\frac{t}{2}}\end{array}\right.$(t为参数),得x-2y-m+4=0.
∵直线l与圆C相交得到的弦长为$\frac{2\sqrt{30}}{5}$,
∴圆心到直线的距离为d=$\sqrt{2-(\frac{\sqrt{30}}{5})^{2}}=\frac{2\sqrt{5}}{5}$.
则$\frac{|-1+2-m+4|}{\sqrt{5}}=\frac{2\sqrt{5}}{5}$,解得:m=3或m=7.

点评 本题考查简单曲线的极坐标方程,考查了直线的参数方程,训练了直线与圆位置关系的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知点P是第三象限角α终边上一点,且其横坐标x=-3,|OP|=5,求角α的正弦、余弦、正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a},则 (∁RA)∩B={2<x<3或7≤x<10}.若A⊆C,则a的取值范围是a≥7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设($\frac{\sqrt{2}}{2}$+x)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,已知焦点在x轴上的椭圆的长轴长与离心率分别为$\frac{2}{5}$a3与$\frac{1}{6}$a5
(1)求此椭圆的标准方程.
(2)F1,F2分别是椭圆的左,右焦点,P为椭圆上一点,与椭圆同一平面上的点M满足:$\overrightarrow{MP}$=3$\overrightarrow{P{F}_{2}}$,$\overrightarrow{{F}_{1}M}$•$\overrightarrow{P{F}_{1}}$+$\overrightarrow{{F}_{1}M}$•$\overrightarrow{PM}$=0,求|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知直线l经过椭圆$\frac{x^2}{169}$+$\frac{y^2}{144}$=1的右焦点,与椭圆交于A(x1,y1)、B(x2,y2),若x1+x2=1,则直线l的方程为(  )
A.4x-13y-20=0或4x+13y-20=0B.2x-3y-10=0或2x+3y-10=0
C.6x+5y-30=0或6x-5y-30=0D.4x+9y-20=0或2x+3y-10=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数$f(x)=\left\{{\begin{array}{l}{\sqrt{x-1}}&{x≥1}\\ 1&{x<1}\end{array}}\right.$,则$f({f({f({\frac{π}{2}})})})$的值为(  )
A.0B.1C.$\sqrt{\frac{π}{2}-1}$D.$\sqrt{\sqrt{\frac{π}{2}-1}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知$|\overrightarrow{OA}|=|\overrightarrow{OB}|=1$,$∠AOB=\frac{2π}{3}$,$\overrightarrow{OP}$=$2\overrightarrow{OA}+t\overrightarrow{OB}$,则$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影的取值范围$(-\frac{1}{2},1]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若等比数列{an}满足a1+a3=6,a4+a6=18,则a10+a12=(  )
A.108B.54C.162D.81

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项的和Sn=$\frac{3}{2}$n2-$\frac{1}{2}$n.
(1)求{an}的通项公式an
(2)当n≥2时,an+1+$\frac{λ}{{a}_{n}}$≥λ恒成立,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案