精英家教网 > 高中数学 > 题目详情
16.若等比数列{an}满足a1+a3=6,a4+a6=18,则a10+a12=(  )
A.108B.54C.162D.81

分析 由题意易得公比q满足q3=3,而a10+a12=(a1+a3)q9,代值计算可得.

解答 解:设等比数列{an}的公比为q,
∵a1+a3=6,a4+a6=18,
∴q3=3,
∴a10+a12=(a1+a3)q9=6×33=162
故选:C.

点评 本题考查等比数列的性质,得出公比是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数$f(x)=sin(2x-\frac{π}{3})+cos2x$的最小正周期T=π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在极坐标系中,动点P(p,θ)运动时,ρ与sin(θ+$\frac{π}{4}$)成正比,动点P的轨迹C经过点(2,0),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=m+t}\\{y=2+\frac{t}{2}}\end{array}\right.$(t为参数).
(Ⅰ)将动点P的轨迹C的极坐标方程化为直角坐标方程;
(Ⅱ)若直线l与曲线C相交得到的弦长为$\frac{2\sqrt{30}}{5}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{tanxtan2x}{tan2x-tanx}$+$\sqrt{3}$(sin2x-cos2x),
(1)把f(x)的表达式化简为Asin(ωx+φ)的形式;
(2)求f(x)在[0,π]的单凋递减区间和最大值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.
(1)设一次订购量为x件,服装的实际出厂单价为P元,写出函数P=f(x)的表达式;
(2)当销售商一次订购多少件时,该服装厂获得的利润最大,最大利润是多少元?
(服装厂售出一件服装的利润=实际出厂单价-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知△ABC的内角A、B、C的对边分别为a、b、c,且a=2,$cosB=-\frac{1}{3}$.
(Ⅰ)若b=3,求sinA的值;
(Ⅱ)若△ABC的面积$S=\frac{{2\sqrt{2}}}{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$(a>1)
(Ⅰ)判断函数的奇偶性;
(Ⅱ)判断其单调性;
(Ⅲ)求其值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,在正方体ABCD-A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:
①直线AM与CC1是相交直线;
②直线AM与BN是平行直线;
③直线BN与MB1是异面直线;
④直线AM与DD1是异面直线.
其中正确的结论为(  )
A.③④B.①②C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设0<xn<1,xn+1=1-$\sqrt{1-{x}_{n}}$(n∈N),求$\underset{lim}{n→∞}$xn

查看答案和解析>>

同步练习册答案