精英家教网 > 高中数学 > 题目详情
1.已知△ABC的内角A、B、C的对边分别为a、b、c,且a=2,$cosB=-\frac{1}{3}$.
(Ⅰ)若b=3,求sinA的值;
(Ⅱ)若△ABC的面积$S=\frac{{2\sqrt{2}}}{3}$,求b的值.

分析 (Ⅰ)求出sinB,再利用正弦定理求sinA的值;
(Ⅱ)△ABC的面积$S=\frac{{2\sqrt{2}}}{3}$=$\frac{1}{2}$×2c×$\frac{2\sqrt{2}}{3}$,求出c,再利用余弦定理求b的值.

解答 解:(Ⅰ)∵$cosB=-\frac{1}{3}$,∴sinB=$\frac{2\sqrt{2}}{3}$.
∵b=3,
∴$\frac{2}{sinA}$=$\frac{3}{\frac{2\sqrt{2}}{3}}$,
∴sinA=$\frac{4\sqrt{2}}{9}$;
(Ⅱ)△ABC的面积$S=\frac{{2\sqrt{2}}}{3}$=$\frac{1}{2}$×2c×$\frac{2\sqrt{2}}{3}$,∴c=1,
∴b=$\sqrt{4+1-2×2×1×(-\frac{1}{3})}$=$\frac{\sqrt{57}}{3}$.

点评 本题考查正弦定理、余弦定理的运用,考查三角形面积的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若函数f(2x+1)=6x+2,则函数f(x)=3x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数$f(x)=\left\{{\begin{array}{l}{\sqrt{x-1}}&{x≥1}\\ 1&{x<1}\end{array}}\right.$,则$f({f({f({\frac{π}{2}})})})$的值为(  )
A.0B.1C.$\sqrt{\frac{π}{2}-1}$D.$\sqrt{\sqrt{\frac{π}{2}-1}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若先将函数$y=\sqrt{3}sin({x-\frac{π}{6}})+cos({x-\frac{π}{6}})$图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再将所得图象向左平移$\frac{π}{6}$个单位,所得函数图象的一条对称轴的方程是(  )
A.$x=\frac{π}{6}$B.$x=\frac{π}{3}$C.$x=\frac{π}{2}$D.$x=\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若等比数列{an}满足a1+a3=6,a4+a6=18,则a10+a12=(  )
A.108B.54C.162D.81

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法错误的是(  )
A.命题“若x2-4x+3=0,则x=3”的逆否命题是:“若x≠3,则x2-4x+3≠0”
B.“x>1”是“|x|>0”的充分不必要条件
C.若p且q为假命题,则p,q至少有一个假命题
D.命题p:“存在x∈R使得x2+x+1<0,”则¬p:“对于任意x∈R,均有x2+x+1>0”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆C的圆心极坐标为(2,$\frac{π}{4}$),半径为1.
(1)求圆C的极坐标方程;
(2)若Q是圆C上动点,点P在直线OQ上,且$\overrightarrow{OP}$=2$\overrightarrow{OQ}$,求点P轨迹的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个4×4×h的长方体能装下8个半径为1的小球和一个半径为2的大球,则h的最小值为(  )
A.2$\sqrt{6}$+2B.2$\sqrt{7}$+2C.4$\sqrt{2}$+2D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x+1)=x2-2x+2,则f(0)=0,f(x)=x2-4x+5.

查看答案和解析>>

同步练习册答案