精英家教网 > 高中数学 > 题目详情
12.设函数$f(x)=\left\{{\begin{array}{l}{\sqrt{x-1}}&{x≥1}\\ 1&{x<1}\end{array}}\right.$,则$f({f({f({\frac{π}{2}})})})$的值为(  )
A.0B.1C.$\sqrt{\frac{π}{2}-1}$D.$\sqrt{\sqrt{\frac{π}{2}-1}-1}$

分析 直接利用导函数由里及外逐步求解即可.

解答 解:函数$f(x)=\left\{{\begin{array}{l}{\sqrt{x-1}}&{x≥1}\\ 1&{x<1}\end{array}}\right.$,
则$f({f({f({\frac{π}{2}})})})$=f(f($\sqrt{\frac{π}{2}-1}$))=f(1)=$\sqrt{1-1}$=0.
故选:A.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.(1)设复数z满足(1+i)z=2,其中i为虚数单位,求复数z.
(2)若复数z=m2+m-2+(m-3)i(m∈R)的共轭复数$\overline{z}$对应的点在第一象限,求实数m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知全集I=R,集合A={x|x2+2x-3>0},$B=\left\{{x|\frac{x+5}{x-1}<0}\right\}$,求
(1)A∩B;
(2)A∪(∁IB)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,三棱柱ABC-A1B1C1的底面是正三角形,侧棱AA1⊥底面ABC,AB=1,AA1=2,点D在侧棱AA1上,点G,H分别是△ABC,△BCD的重心.
(1)求证:GH∥AD;
(2)当AH=$\frac{\sqrt{3}}{2}$时,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在极坐标系中,动点P(p,θ)运动时,ρ与sin(θ+$\frac{π}{4}$)成正比,动点P的轨迹C经过点(2,0),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=m+t}\\{y=2+\frac{t}{2}}\end{array}\right.$(t为参数).
(Ⅰ)将动点P的轨迹C的极坐标方程化为直角坐标方程;
(Ⅱ)若直线l与曲线C相交得到的弦长为$\frac{2\sqrt{30}}{5}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow{OA},\overrightarrow{OB}$为单位向量,且$\overrightarrow{OA}•\overrightarrow{OB}=\frac{1}{4}$,点C是向量$\overrightarrow{OA},\overrightarrow{OB}$的夹角内一点,$|\overrightarrow{OC}|=4$,$\overrightarrow{OB}•\overrightarrow{OC}=\frac{7}{2}$.若数列{an}满足$\overrightarrow{OC}=\frac{{3{a_{n+1}}({a_n}+1)}}{{2{a_n}}}\overrightarrow{OB}+{a_1}\overrightarrow{OA}$,则a4=$\frac{16}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{tanxtan2x}{tan2x-tanx}$+$\sqrt{3}$(sin2x-cos2x),
(1)把f(x)的表达式化简为Asin(ωx+φ)的形式;
(2)求f(x)在[0,π]的单凋递减区间和最大值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知△ABC的内角A、B、C的对边分别为a、b、c,且a=2,$cosB=-\frac{1}{3}$.
(Ⅰ)若b=3,求sinA的值;
(Ⅱ)若△ABC的面积$S=\frac{{2\sqrt{2}}}{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列积分均存在,则下列结论错误的是(  )
A.d(∫f(x)dx)=f(x)dxB.∫f(x)dx=∫f(u)du
C.${∫}_{a}^{b}$f(x)dx=${∫}_{a}^{b}$f(u)duD.${∫}_{a}^{b}$f(x)dx+${∫}_{b}^{a}$f(x)dx=0.

查看答案和解析>>

同步练习册答案