精英家教网 > 高中数学 > 题目详情
20.如图所示,三棱柱ABC-A1B1C1的底面是正三角形,侧棱AA1⊥底面ABC,AB=1,AA1=2,点D在侧棱AA1上,点G,H分别是△ABC,△BCD的重心.
(1)求证:GH∥AD;
(2)当AH=$\frac{\sqrt{3}}{2}$时,求AD的长.

分析 (1)取BC的中点E,连接AE,DE,根据重心的定义和性质,可得GH:HE=AG:GE=2:1,再由平行线分线段成比例定理的逆定理得到结论;
(2)根据AB=1,依次计算AE,AG,GH,AD的长度,可得答案.

解答 证明:(1)取BC的中点E,连接AE,DE,
∵点G,H分别是△ABC,△BCD的重心.
∴G在AE上,H在DE上,
且GH:HE=AG:GE=2:1,
∴GH∥AD;
(2)∵AB=1,
∴AE=$\sqrt{{1}^{2}-(\frac{1}{2})^{2}}$=$\frac{\sqrt{3}}{2}$,
∴AG=$\frac{2}{3}$AE=$\frac{2}{3}•\frac{\sqrt{3}}{2}$=33,
又∵AH=$\frac{\sqrt{3}}{2}$,
∴GH=$\sqrt{{AH}^{2}-{AG}^{2}}$=$\sqrt{(\frac{\sqrt{3}}{2})^{2}-(\frac{\sqrt{3}}{3})^{2}}$=$\frac{\sqrt{15}}{6}$,
∴AD=3GH=$\frac{\sqrt{15}}{2}$

点评 本题考查的知识点是三角形的五心,平行线分线段成比例定理的逆定理,勾股定理,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.研究表明:提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为v(x)=0;当车流密度不超过20辆/千米时,车流速度为60千米/小时;当20≤x≤200时,车流速度v(x)是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式.
(2)设车流量f(x)=v(x)•x,求当车流密度为多少时,车流量最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(2x+1)=6x+2,则函数f(x)=3x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=3-2sin2x是(  )
A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数
C.最小正周期为π的偶函数D.最小正周期为π的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设($\frac{\sqrt{2}}{2}$+x)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,已知焦点在x轴上的椭圆的长轴长与离心率分别为$\frac{2}{5}$a3与$\frac{1}{6}$a5
(1)求此椭圆的标准方程.
(2)F1,F2分别是椭圆的左,右焦点,P为椭圆上一点,与椭圆同一平面上的点M满足:$\overrightarrow{MP}$=3$\overrightarrow{P{F}_{2}}$,$\overrightarrow{{F}_{1}M}$•$\overrightarrow{P{F}_{1}}$+$\overrightarrow{{F}_{1}M}$•$\overrightarrow{PM}$=0,求|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知中心在原点O的椭圆,右焦点为F(1,0),经过F点且与x轴垂直的弦长为$\sqrt{2}$,过点F的直线l与椭圆交于A,B两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的范围;
(Ⅲ)若直线AB的斜率为k,若向量$\overrightarrow{a}$=(-2$\sqrt{2}$,1)与$\overrightarrow{OA}$+$\overrightarrow{OB}$共线,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数$f(x)=\left\{{\begin{array}{l}{\sqrt{x-1}}&{x≥1}\\ 1&{x<1}\end{array}}\right.$,则$f({f({f({\frac{π}{2}})})})$的值为(  )
A.0B.1C.$\sqrt{\frac{π}{2}-1}$D.$\sqrt{\sqrt{\frac{π}{2}-1}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若先将函数$y=\sqrt{3}sin({x-\frac{π}{6}})+cos({x-\frac{π}{6}})$图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再将所得图象向左平移$\frac{π}{6}$个单位,所得函数图象的一条对称轴的方程是(  )
A.$x=\frac{π}{6}$B.$x=\frac{π}{3}$C.$x=\frac{π}{2}$D.$x=\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个4×4×h的长方体能装下8个半径为1的小球和一个半径为2的大球,则h的最小值为(  )
A.2$\sqrt{6}$+2B.2$\sqrt{7}$+2C.4$\sqrt{2}$+2D.8

查看答案和解析>>

同步练习册答案