精英家教网 > 高中数学 > 题目详情

如图,内接于上,于点E,点F在DA的延长线上,,求证:

(1)的切线;
(2).

(1)证明过程详见解析;(2)证明过程详见解析.

解析试题分析:本题主要以圆为几何背景考查线线垂直、相等的证明,考查学生的转化与化归能力.第一问,要证明的切线,需要证明,由于,所以相等,而相等,而相等,又因为,所以通过角的代换得也就是;第二问,先利用切割线定理列出等式,再通过边的等量关系转换边,得到求证的表达式.
试题解析:(Ⅰ)连结
因为,所以的直径.
因为,所以
又因为,所以.        4分
又因为
所以,即
所以的切线.           7分

(Ⅱ)由切割线定理,得
因为
所以.  
考点:1.同弦所对圆周角相等;2.切割线定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点EDB垂直BE交圆于点D.
 
(1)证明:DBDC
(2)设圆的半径为1,BC,延长CEAB于点F,求△BCF外接圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,AD、CE是△ABC中边BC、AB的高,AD和CE相交于点F.

求证:AF·FD=CF·FE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是⊙的直径, 是⊙的切线,的延长线交于点为切点.若的平分线和⊙分别交于点,求的值.
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点EDB垂直BE交圆于点D.

(1)证明:DBDC
(2)设圆的半径为1,BC,延长CEAB于点F,求△BCF外接圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是半径为的圆的两条弦,它们相交于的中点,若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.

(I)求证:DE是⊙O的切线;
(II)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

切线与圆切于点,圆内有一点满足,的平分线交圆于,,延长交圆于,延长交圆于,连接.

(Ⅰ)证明://;
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,过圆O外一点P作该圆的两条割线PAB和PCD,分别交圆O于点A,B,C,D弦AD和BC交于Q点,割线PEF经过Q点交圆O于点E、F,点M在EF上,且:
(I)求证:PA·PB=PM·PQ.
(II)求证:.

查看答案和解析>>

同步练习册答案