精英家教网 > 高中数学 > 题目详情
16.已知复数z=$\frac{(3+i)^{2}}{1+i}$(i为虚数单位).则z的共轭复数在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 首先对已知复数z化简,然后求出共轭复数,判断位置.

解答 解:z=$\frac{(3+i)^{2}}{1+i}$=$\frac{8+6i}{1+i}$=$\frac{(8+6i)(1-i)}{(1+i)(1-i)}=\frac{14-2i}{2}$=7-i;所以$\overline{z}$=7+i,对应点(7,1)在第一象限;
故选A.

点评 本题考查了复数的运算以及复数的几何意义;熟练掌握运算法则是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数f(x)=$\sqrt{3-2x-{x}^{2}}$的定义域为[-3,1],值域为[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在公比为q=2的等比数列{an}中,Sn是其前n项和,若am=2,Sn=$\frac{255}{64}$,则m=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若f(x)=x3-ax+1在(0,1)上单调递减,则实数a的取值范围是(  )
A.a≤2B.a≤3C.a>3D.a≥3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若x∈R,则x+1与ex的大小关系(  )
A.x+1>exB.x+1<exC.x+1≤exD.x+1≥ex

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.①若正实数a,b,c满足a+2b+3c=8,求$\frac{1}{a}$+$\frac{2}{b}$+$\frac{3}{c}$的最小值.
②若a,b,c均为正实数,求证:a+$\frac{1}{b}$,b+$\frac{1}{c}$,c+$\frac{1}{a}$的值至少有一个不小于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知两个不共线的向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为θ,且|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=1,x为正实数.
(1)若$\overrightarrow{a}$+2$\overrightarrow{b}$与$\overrightarrow{a}$-4$\overrightarrow{b}$垂直,求tanθ;
(2)若θ=$\frac{π}{6}$,求|x$\overrightarrow{a}$-$\overrightarrow{b}$|的最小值及对应的x值,并指出向量$\overrightarrow{a}$与x$\overrightarrow{a}$-$\overrightarrow{b}$的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知复数z=2-i(i为虚数单位),则z的共轭复数$\overline z$为2+i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=aex-x2(其中a∈R,e是自然对数底数).
(1)若a=-2,试判断函数f(x)在区间(0,+∞)上的单调性;
(2)若f(x)有两个极值点x1,x2(x1<x2),求a的取值范围;
(3)在(2)的条件下,试证明0<f(x1)<1.

查看答案和解析>>

同步练习册答案