精英家教网 > 高中数学 > 题目详情
11.若x∈R,则x+1与ex的大小关系(  )
A.x+1>exB.x+1<exC.x+1≤exD.x+1≥ex

分析 先构造函数f(x)=ex-x-1,然后利用导数研究该函数在R上的最小值,最小值与0进行比较即可求出所求.

解答 解:令f(x)=ex-x-1则f'(x)=ex-1
当x∈(-∞,0)时f'(x)<0,当x∈(0,+∞)时f'(x)>0
∴当x=0时f(x)取最小值0
∴f(x)≥即ex-x-1≥0
∴ex≥1+x,
故选:C.

点评 本题考查比较大小的方法,考查了利用导数研究函数的单调性,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.函数$f(x)=2sin(\frac{1}{2}x+\frac{π}{4})x∈[0,+∞)$的周期为4π,振幅为2,初相为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在等比数列{an}中,若公比q=4,且第3项为16,则该数列的通项公式an=4n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC中的三个内角A,B,C所对的边分别为a,b,c,且满足$cosC=\frac{{\sqrt{3}}}{3},a=3$,(b-a)(sinB+sinA)=(b-c)sinC.
(Ⅰ)求sinB的值;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.宁德至福州铁路里程约为100km,和谐号动车从宁德站出发,前2分钟内变速运行,其速度v(米/分钟)关于时间t(分钟)满足函数关系:v(t)=at3+bt2+ct+d,且v'(0)=v'(2)=0,之后匀速行驶24分钟,再减速行驶5km至终点(福州站).
(Ⅰ)求:前2分钟速度v(t)的函数关系式;
(Ⅱ)求动车运行过程中速度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知复数z=$\frac{(3+i)^{2}}{1+i}$(i为虚数单位).则z的共轭复数在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=|2x-1|+|x+2|
①求不等式f(x)<2x+3的解集
②对于?a∈R,?x∈R,使得f(x)≤a2+2a+b成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某几何体的三视图如图所示,该几何体的体积是(  )
A.a3B.$\frac{3}{2}$a3C.$\frac{1}{2}$a3D.3a3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知sinx-cosx∈[-1,$\sqrt{2}$],求函数f(x)=(sinx-a)(cosx+a)的最大值.

查看答案和解析>>

同步练习册答案