【题目】已知等差数列{an}的前n项和为Sn , 且S3=9,a2a4=21,数列{bn}满足 ,若 ,则n的最小值为( )
A.6
B.7
C.8
D.9
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x),y=g(x)的值域均为R,有以下命题:
①若对于任意x∈R都有f[f(x)]=f(x)成立,则f(x)=x.
②若对于任意x∈R都有f[f(x)]=x成立,则f(x)=x.
③若存在唯一的实数a,使得f[g(a)]=a成立,且对于任意x∈R都有g[f(x)]=x2﹣x+1成立,则存在唯一实数x0 , 使得g(ax0)=1,f(x0)=a.
④若存在实数x0 , y0 , f[g(x0)]=x0 , 且g(x0)=g(y0),则x0=y0 .
其中是真命题的序号是 . (写出所有满足条件的命题序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的各项均为不等于1的正数,数列{bn}满足bn=lgan,b3=18,b6=12,则数列{bn}的前n项和的最大值等于( )
A. 126 B. 130 C. 132 D. 134
【答案】C
【解析】
由题意可知,lga3=b3,lga6=b6再由b3,b6,用a1和q表示出a3和b6,进而求得q和a1,根据{an}为正项等比数列推知{bn}为等差数列,进而得出数列bn的通项公式和前n项和,可知Sn的表达式为一元二次函数,根据其单调性进而求得Sn的最大值.
由题意可知,lga3=b3,lga6=b6.
又∵b3=18,b6=12,则a1q2=1018,a1q5=1012,
∴q3=10﹣6.
即q=10﹣2,∴a1=1022.
又∵{an}为正项等比数列,
∴{bn}为等差数列,
且d=﹣2,b1=22.
故bn=22+(n﹣1)×(﹣2)=﹣2n+24.
∴Sn=22n+×(﹣2)
=﹣n2+23n=,又∵n∈N*,故n=11或12时,(Sn)max=132.
故答案为:C.
【点睛】
这个题目考查的是等比数列的性质和应用;解决等差等比数列的小题时,常见的思路是可以化基本量,解方程;利用等差等比数列的性质解决题目;还有就是如果题目中涉及到的项较多时,可以观察项和项之间的脚码间的关系,也可以通过这个发现规律。
【题型】单选题
【结束】
12
【题目】已知数列是递增数列,且对,都有,则实数的取值范围是
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设Sn是等差数列{an}的前n项和,已知与的等比中项为,且与的等差中项为1,求数列{an}的通项公式。
【答案】或.
【解析】
设等差数列{an}的首项为a1,公差为d,运用等差中项和等比中项的定义,利用等差数列的求和公式,代入可求a1,d,解方程可求通项an.
设等差数列{an}的首项,公差为,则通项为,
前项和为,依题意有,
其中,由此可得,
整理得, 解方程组得或,
由此得;或.
经检验和均合题意.
所以所求等差数列的通项公式为或.
【点睛】
本题主要考查了等差数列的通项公式和性质及等比数列中项的性质,数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用。
【题型】解答题
【结束】
20
【题目】等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960.
(1)求an与bn;
(2)求
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,其中a,b,c∈R.
(1)若a=b=c=1,求f(x)的单调区间;
(2)若b=c=1,且当x≥0时,f(x)≥1恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为“成绩优良”.
分数 | [50,59) | [60,69) | [70,79) | [80,89) | [90,100] |
甲班频数 | 5 | 6 | 4 | 4 | 1 |
乙班频数 | 1 | 3 | 6 | 5 | 5 |
(1)由以上统计数据填写下面2×2列联表,并判断“成绩优良与教学方式是否有关”?
甲班 | 乙班 | 总计 | |
成绩优良 | |||
成绩不优良 | |||
总计 |
现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核.在这8人中,记成绩不优良的乙班人数为,求的分布列及数学期望.
附: . 临界值表
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着生活水平的提高,越来越多的人参与了潜水这项活动。某潜水中心调查了100名男姓与100名女姓下潜至距离水面5米时是否会耳鸣,下图为其等高条形图:
绘出2×2列联表;
②根据列联表的独立性检验,能否在犯错误的概率不超过0.05的前提下认为耳鸣与性别有关系?
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣ax﹣alnx(a∈R),g(x)=﹣x3+ x2+2x﹣6,g(x)在[1,4]上的最大值为b,当x∈[1,+∞)时,f(x)≥b恒成立,则a的取值范围( )
A.a≤2
B.a≤1
C.a≤﹣1
D.a≤0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a,b,c分别是A,B,C的对边,(2a﹣c)cosB﹣bcosC=0.
(1)求角B的大小;
(2)设函数f(x)=2sinxcosxcosB﹣ cos2x,求函数f(x)的最大值及当f(x)取得最大值时x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com