精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=x-ax2-lnx(a>0).
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若f(x)有两个极值点x1,x2,证明:f(x1)+f(x2)>3-2ln2.

分析 (1)先求出函数的导数,通过讨论a的范围,确定导函数的符号,从而判断函数的单调性;
(2)表示出f(x1)+f(x2)=lna+$\frac{1}{4a}$+ln2+1,通过求导进行证明.

解答 解:(1)∵f′(x)=-$\frac{2{ax}^{2}-x+1}{x}$,(x>0,a>0),
不妨设φ(x)=2ax2-x+1(x>0,a>0),
则关于x的方程2ax2-x+1=0的判别式△=1-8a,
当a≥$\frac{1}{8}$时,△≤0,φ(x)≥0,故f′(x)≤0,
∴函数f(x)在(0,+∞)上单调递减,
当0<a<$\frac{1}{8}$时,△>0,方程f′(x)=0有两个不相等的正根x1,x2
不妨设x1<x2,则当x∈(0,x1)及x∈(x2,+∞)时f′(x)<0,
当x∈(x1,x2)时,f′(x)>0,
∴f(x)在(0,x1),(x2,+∞)递减,在(x1,x2)递增;
(2)由(1)知当且仅当a∈(0,$\frac{1}{8}$)时f(x)有极小值x1 和极大值x2
且x1,x2是方程的两个正根,则x1+x2=$\frac{1}{2a}$,x1 x2=$\frac{1}{2a}$,
∴f(x1)+f(x2)=(x1+x2)-a[(x1+x2)2-2x1 x2]-(lnx1+lnx2
=ln(2a)+$\frac{1}{4a}$+1=lna+$\frac{1}{4a}$+ln2+1(0<a<$\frac{1}{8}$),
令g(a)=lna+$\frac{1}{4a}$+ln2+1,
当a∈(0,$\frac{1}{8}$)时,g′(a)=$\frac{4a-1}{{4a}^{2}}$<0,
∴g(a)在(0,$\frac{1}{8}$)内单调递减,
故g(a)>g($\frac{1}{8}$)=3-2ln2,
∴f(x1)+f(x2)>3-2ln2.

点评 本题考察了函数的单调性,导数的应用,不等式的证明,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点分别为F1,F2,短轴两个端点为A,B,且四边形F1AF2B是边长为2的正方形.
(1)求椭圆C的方程;
(2)已知圆的方程是x2+y2=a2+b2,过圆上任一点P作椭圆C的两条切线l1与l2,求证:l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设0<a<1,函数f(x)=loga|x|的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如果10N的力能使弹簧压缩10cm,为在弹性限度内将弹簧从平衡位置拉到离平衡位置6cm处,则克服弹力所做的功为0.18J.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数g(x)=(2-a)lnx,h(x)=lnx+ax2(a∈R),令f(x)=g(x)+h′(x)
(Ⅰ)当a=0时,求f(x)的极值;
(Ⅱ)当-3<a<-2时,若对任意λ1,λ2∈[1,3],使得|f(λ1)-f(λ2)|<(m+ln3)a-2ln3恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.[A]在几何中可以类比平面几何的结论推理空间几何的结论,如平面内的三点共线类比空间中的四点共面.
(1)已知点A,B,C是平面内三点,若存在实数λ,使得$\overrightarrow{AB}$=$λ\overrightarrow{AC}$成立,则点A,B,C共线.类比上述结论,写出空间中四点共面的结论;
(2)已知(1)结论的逆命题正确,请利用其解决以下问题:已知点A,B,C,D是空间中共面的四点,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=1,∠BAC=90°,|$\overrightarrow{AD}$|=2$\sqrt{5}$,$\overrightarrow{AD}⊥\overrightarrow{BC}$,试用$\overrightarrow{AB}$、$\overrightarrow{AC}$表示$\overrightarrow{AD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,AB为⊙O的直径,过点B作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D.
(Ⅰ)求证:CE2=CD•CB.
(Ⅱ)若AB=2,BC=$\frac{12}{5}$,求CE与CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知x,y,z为正实数,且$\frac{1}{x}$+$\frac{1}{y}$+$\frac{1}{z}$=1,求x+4y+9z的最小值及取得最小值时x,y,z的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn,且Sn=2an+n-4(n∈N*
(1)求{an}的通项公式;
(2)设Tn为数列{$\frac{3}{a_n}$}的前n项,证明:1≤Tn<$\frac{5}{2}$(n∈N*).

查看答案和解析>>

同步练习册答案