精英家教网 > 高中数学 > 题目详情
13.已知随机变量X~B(4,p),若E(X)=2,则D(X)=1.

分析 根据随机变量符合二项分布,由二项分布的期望公式,列出方程,解方程,求出p,即可求出答案.

解答 解:随机变量X服从二项分布X~B(4,p),E(X)=2,
∴4p=2,
∴p=$\frac{1}{2}$
∴D(X)=4p(1-p)=1,
故答案为:1.

点评 本题考查二项分布与n次独立重复试验的模型,考查二项分布的方差,本题解题的关键是通过期望公式列方程,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.A={1,2,3},B={-1,2,-3},A∩B=(  )
A.{2}B.2C.{-3,-1,1,2,3}D.φ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a为实数,函数f(x)=(x2+1)(x+a).
(1)若f′(-1)=0,求函数y=f(x)在[-$\frac{3}{2}$,1]上的极大值和极小值;
(2)若函数f(x)的图象上有与x轴平行的切线,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.椭圆C的中心在原点、焦点在x轴上,椭圆C的两个焦点及短轴的两个端点恰是一个面积为8的正方形的四个顶点.
(1)求椭圆C的方程;
(2)设直线y=kx+b与椭圆C恒有两个横坐标不同的交点A、B,
①写出满足上述要求的充要条件(用含k、b的式子表示);
②若线段AB的垂直平分线与x轴交于点P(x0,0),求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足a1=2,且2an-1=anan+1,bn=(ann(n∈N*).
(1)求a2,a3,a4,并猜想{an}的通项公式an
(2)利用(1)中你猜想的结果,试比较bn与3的大小,并说明理由;
(3)证明:bn<bn+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知A(2,0),B(3,3),直线l∥AB,则直线l的斜率为(  )
A.-3B.3C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}是等差数列,且a3=-6,a6=0.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若等比数列{bn}满足b1=a2,b2=a1+a2+a3,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C的对边分别为a,b,c且cosC=$\frac{2\sqrt{7}}{7}$,ab=12$\sqrt{7}$.
(1)求△ABC的面积S;
(2)若a=6,求角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列{an}满足:a1=$\frac{1}{6}$,前n项和Sn=$\frac{n(n+1)}{2}$an
(1)写出a2,a3,a4
(2)猜出an的表达式,并用数学归纳法证明.

查看答案和解析>>

同步练习册答案