精英家教网 > 高中数学 > 题目详情
9.已知某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{14}{3}$B.4C.$\frac{10}{3}$D.3

分析 利用三视图作出原几何图形,继而求得体积.

解答 由三视图可得该几何图形为如图所示:
其中,AB=2,AD=GF=1,BC=2


作DH∥AB,连接GH,DG,AF,
则VABEF-CDG=VE-AFGD+VC-DGH+VDGH-ABF
∴VABEF-CDG=$\frac{1}{3}×1×2\sqrt{2}×\sqrt{2}+\frac{1}{3}×1×\frac{1}{2}×2×2+\frac{1}{2}×2×2×1=4$.
故选:B.

点评 本题主要考查根据三视图作出原几何图形的能力.属基础题型,高考常考题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.执行下面的程序框图,那么输出的S等于(  )
A.42B.56C.72D.90

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图是一个空间几何体的三视图(俯视图外框为正方形),则这个几何体的表面积为80+4π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=$\frac{1}{\sqrt{{x}^{2}-3x+2}}$+lg[1-($\frac{1}{3}$)x]的定义域用区间表示为(0,1)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,以动圆经过点(1,0)且与直线x=-1相切,若该动圆圆心的轨迹为曲线E.
(1)求曲线E的方程;
(2)已知点A(5,0),倾斜角为$\frac{π}{4}$的直线l与线段OA相交(不经过点O或点A)且与曲线E交于M、N两点,求△AMN面积的最大值,及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知{an}为等比数列,a4+a7=2,a5a6=-8,则a1+a10=-7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若正实数a、b、c满足a+b+c=3,ab+bc+ac=2,则a+b的最小值是$\frac{6-2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.
(1)求这次铅球测试成绩合格的人数;
(2)若从今年的高中毕业生中随机抽取两名,记X表示两人中成绩不合格的人数,求n的分布列及数学期望;
(3)经过多次测试后,甲成绩在8~10米之间,乙成绩在9.5~10.5米之间,现甲、乙各投掷一次,求甲比乙投掷远的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$\overrightarrow{e}$和$\overrightarrow{f}$是互相垂直的单位向量,向量$\overrightarrow{{a}_{n}}$满足:$\overrightarrow{e}•\overrightarrow{{a}_{n}}$=n,$\overrightarrow{f}•\overrightarrow{{a}_{n}}$=2n,n∈N*,设θn为$\overrightarrow{{a}_{n+1}}$-$\overrightarrow{{a}_{n}}$和$\overrightarrow{{a}_{n+2}}$-$\overrightarrow{{a}_{n+1}}$的夹角,则(  )
A.θn随着n的增大而增大B.θn随着n的增大而减小
C.随着n的增大,θn先增大后减小D.随着n的增大,θn先减小后增大

查看答案和解析>>

同步练习册答案