精英家教网 > 高中数学 > 题目详情
19.如图是一个空间几何体的三视图(俯视图外框为正方形),则这个几何体的表面积为80+4π.

分析 空间几何体正四棱住内挖空了一个圆柱,利用底面边长高求解即可.

解答 解:空间几何体正四棱住内挖空了一个圆柱,

底面边长为4,高为3的长方体,
圆柱的底面半径为1,
这个几何体的表面积为2×4×4-2π×12+4×4×3+2π×1×3=32-2π+48+6π=80+4π
故答案为:80+4π

点评 本题考查了空间组合体的三视图,直观图的性质,空间想象能力,计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.钝角△ABC的三个内角A、B、C的对边分别为a、b、c,A=$\frac{π}{4}$,sin2B+cos22C=1.
(1)求角B,C;
(2)若a2+c2=b+$\sqrt{3}$ac+2,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=$\sqrt{3}$bc,sinC=$\sqrt{3}$sinB,则A=(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和为Sn,且Sn=tan-t,n∈N*,t∈R.
(Ⅰ)若数列{an}为等比数列,求t的取值范围和此时数列{an}的通项公式;
(Ⅱ)若t=2,且2bn=a2n-1,证明:{bn}为等差数列,并求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某数学教师一个上午有3个班级课,每班一节.如果上午只能排4节课,并且不能连上3节课,则这位教师上午的课表有(  )种可能的排法.
A.6B.8C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.直角坐标系中曲线C的参数方程为$\left\{\begin{array}{l}x=4cosθ\\ y=2sinθ\end{array}$(θ为参数).
(1)求曲线C的直角坐标方程;
(2)经过点M(2,1)作直线l交曲线C于A,B两点,若M恰好为线段AB的三等分点,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图是在竖直平面内的一个“通道游戏”.图中竖直线段和斜线段都表示通道,并且在交点处相遇,若竖直线段有第一条的为第一层,有二条的为第二层,…,依此类推.现有一颗小弹子从第一层的通道里向下运动.若在通道的分叉处,小弹子以相同的概率落入每个通道,记小弹子落入第n层第m个竖直通道(从左至右)的概率为P(n,m).某研究性学习小组经探究发现小弹子落入第n层的第m个通道的次数服从二项分布,请你解决下列问题.
(Ⅰ)求P(2,1),P(3,2)及P(4,2)的值,并猜想P(n,m)的表达式.(不必证明)
(Ⅱ)设小弹子落入第6层第m个竖直通道得到分数为ξ,其中ξ=$\left\{\begin{array}{l}{4-m,1≤m≤3}\\{m-3,4≤m≤6}\end{array}\right.$,试求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{14}{3}$B.4C.$\frac{10}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知顶点在原点,对称轴为坐标轴的抛物线Г的焦点与双曲线x2-y2=1的右顶点重合.
(Ⅰ)求抛物线Г的标准方程;
(Ⅱ)过点P(1,0)的动直线l交抛物线Г于A,B两点,以线段AB为直径作圆C,试探究是否存在实数m,使得直线x=m总是与圆C相切,如果存在,求出直线方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案