精英家教网 > 高中数学 > 题目详情

如图,从有6条网线,数字表示该网线单位时间内可以通过的最大信息量,现从中任取3条网线且使每条网线通过最大信息量,设这三条网线通过的最大信息之和为.

(1)当时,线路信息畅通,求线路信息畅通的概率;
(2)求的分布列和数学期望.

(1);(2)见解析.

解析试题分析:(1)三条网线共有20种选择,其中的有5种∴;(2)根据离散型随机变量的概率求法计算并列分布列即可.
试题解析:(1)三条网线共有20种选择,其中的有5种∴
(2)    


10
11
12
13
14
15







分布列:
.
考点:离散型随机变量的分布列和数学期望、古典概型概率的计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

一个盒子中装有形状大小相同的5张卡片,上面分别标有数字1,2,3,4,5,甲乙两人分别从盒子中随机不放回的各抽取一张.
(Ⅰ)写出所有可能的结果,并求出甲乙所抽卡片上的数字之和为偶数的概率;
(Ⅱ)以盒子中剩下的三张卡片上的数字作为边长来构造三角形,求出能构成三角形的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设关于的一元二次方程.
(1)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有实根的概率;
(2)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

袋中有8个大小相同的小球,其中1个黑球,3个白球,4个红球.
(I)若从袋中一次摸出2个小球,求恰为异色球的概率;
(II)若从袋中一次摸出3个小球,且3个球中,黑球与白球的个数都没有超过红球的个数,记此时红球的个数为,求的分布列及数学期望E.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对某校高一年级学生参加社区服务次数统计,随机抽取了名学生作为样本,得到这名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表如下:

(1)求出表中的值;
(2)在所取样本中,从参加社区服务的次数不少于次的学生中任选人,求至少一人参加社区服务次数在区间内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n。如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验。
假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在半径为1的圆周上任取三点,连接成三角形,这个三角形是锐角三角形的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

小明参加完高考后,某日路过一家电子游戏室,注意到一台电子游戏机的规则是:你可在1,2,3,4,5,6点中选一个,押上赌注a元。掷3枚骰子,如果所押的点数出现1次、2次、3次,那么原来的赌注仍还给你,并且你还分别可以收到赌注的1倍、2倍、3倍的奖励。如果所押的点数不出现,那么赌注就被庄家没收。
(1)求掷3枚骰子,至少出现1枚为1点的概率;
(2)如果小明准备尝试一次,请你计算一下他获利的期望值,并给小明一个正确的建议。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个口袋中装有2个白球和个红球(),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖.
(Ⅰ) 摸球一次,若中奖概率为,求的值;
(Ⅱ) 若,摸球三次,记中奖的次数为,试写出的分布列并求其期望.

查看答案和解析>>

同步练习册答案