精英家教网 > 高中数学 > 题目详情
2.证明:若点O是△ABC的内心,则sinA$\overrightarrow{OA}$+sinB$\overrightarrow{OB}$+sinC$\overrightarrow{OC}$=$\overrightarrow{0}$.

分析 设O是O是△ABC的内任一点,以O为坐标原点,OA所在直线为x轴,建立直角坐标系.并设A(p,0),B(qcosα,sinα),C(rcosβ,-rsinβ),其中∠AOB=α,∠AOC=β,则∠BOC=2π-(α+β),利用向量的基本运算和不共线性质,即可求解证明.

解答 解:设O是△ABC的内任一点,以O为坐标原点,OA所在直线为x轴,建立直角坐标系.并设A(p,0),B(qcosα,qsinα),C(rcosβ,-rsinβ),其中∠AOB=α,∠AOC=β,则∠BOC=2π-(α+β),
点O是△ABC的内心,显然$\overrightarrow{OB}$,$\overrightarrow{OC}$不共线,由平面向量基本定理,可得$\overrightarrow{OA}=x$$\overrightarrow{OB}$+y$\overrightarrow{OC}$.
则$\left\{\begin{array}{l}{P=xqcosα+yrcosβ}\\{0=xqsinα-yrsinβ}\end{array}\right.$,可得:$\left\{\begin{array}{l}{x=\frac{psinβ}{qsin(α+β)}}\\{y=\frac{psinα}{rsin(α+β)}}\end{array}\right.$
可得:$qrsin(α+β)\overrightarrow{OA}=prsinβ\overrightarrow{OB}+pqsinα\overrightarrow{OC}$,
∵SBOC:SAOB:sAOC=a:b:c,
即sinA:sinB:sinC=a:b:c.
∴sinA$\overrightarrow{OA}$+sinB$\overrightarrow{OB}$+sinC$\overrightarrow{OC}$=$\overrightarrow{0}$.

点评 本题考查了△ABC的内心的利用和向量的基本运算和不共线性质.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,A,B,E是⊙O上的点,过E点的⊙O的切线与直线AB交于点P,∠APE的平分线和AE,BE分别交于点C,D.求证:
(1)DE=CE;
(2)$\frac{CA}{CE}=\frac{PE}{PB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若x,y满足约束条件$\left\{{\begin{array}{l}{x-y≤0}\\{2x-y≥0}\\{2x+y≤4}\end{array}}\right.$,z=x+y+3与z=x+ny取得最大值的最优解相同,则实数n的取值范围是(  )
A.{1}B.$({-∞,\frac{1}{2}})$C.$({\frac{1}{2},+∞})$D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某研究性学习小组调查研究性别对喜欢吃甜食的影响,部分统计数据如表:
  女生 男生 合计
 喜欢吃甜食 8 4 12
 不喜欢吃甜食216 18
 合计 10 20 30
附表:
 P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
经计算K2=10,则下列选项正确的是(  )
A.有99.5%的把握认为性别对喜欢吃甜食无影响
B.有99.5%的把握认为性别对喜欢吃甜食有影响
C.有99.9%的把握认为性别对喜欢吃甜食无影响
D.有99.9%的把握认为性别对喜欢吃甜食有影响

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若抛物线y2=8x的焦点F与双曲线$\frac{x^2}{3}-\frac{y^2}{n}=1$的一个焦点重合,则n的值为(  )
A.2B.-1C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=lnx,若4f′(x)+x≥a恒成立,则a的取值范围是(  )
A.a≥4B.a≤4C.a≥2$\sqrt{2}$D.a≤2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-1(x≤0)}\\{f(x-1)(x>0)}\end{array}\right.$,若函数g(x)=f(x)-ax+1有5个不同的零点,则实数α的取值范围是[$\frac{1}{5}$,$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,DE=2,M为线段BF的中点.
(1)求三棱锥M-CDE的体积;
(2)求证:DM⊥平面ACE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设两个非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=0,且2|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.2$\sqrt{3}$B.2C.4D.8

查看答案和解析>>

同步练习册答案