精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin(x-
π
6
)•cosx.
(1)若sin(α-
π
3
)=
2
3
,求f(α)的值;
(2)若将y=f(x)的图象向右平移m(m>0)个单位后,得到的图象关于y轴对称,求m的最小值.
考点:三角函数中的恒等变换应用,函数y=Asin(ωx+φ)的图象变换
专题:三角函数的求值,三角函数的图像与性质
分析:(1)首先对三角函数式进行恒等变换,下一步利用换元法和诱导公式进行变换,根据题中的已知条件进行求值.
(2)由(1)的部分结论,进一步变换成正弦型函数关系式,然后根据整体思想求得对称轴,最后确定最小值.
解答: 解:(1)f(x)=sin(x-
π
6
)cosx=
3
2
1
2
sin2x-
1
2
cos2x

=
1
2
(
3
2
sin2x-
1
2
cos2x)-
1
4

=
1
2
sin(2x-
π
6
)-
1
4

α-
π
3
α=β+
π
3
且sinβ=
2
3

则:f(α)=
1
2
sin(2α-
π
6
)-
1
4
=
1
2
sin(2β+
π
2
)-
1
4

=
1
2
(1-2sin2β)-
1
4
=
1
36

(2)∵f(x-m)=
1
2
sin(2x-2m-
π
6
)-
1
4
的图象关于y轴对称,
2m+
π
6
=kπ+
π
2
(k∈Z),
所以m的最小值为:
π
6

故答案为:(1)f(α)=
1
36

(2)所以m的最小值为:
π
6
点评:本题考查的知识点:三换元法的应用,诱导公式的应用,正弦型函数的对称轴及相关的运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
ax2+x,x≥0
x-ax2x<0
,设关于x的不等式f(x+a)<f(x)的解集为M,若[-
1
2
1
2
]⊆M,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=0且an+1=an+
1
2n
+1,数列{bn}的前n项和Sn=2-bn+
n(n+3)
2
,其中n∈N*
(1)求数列{an}的通项公式;
(2)求证:{bn-n}是等比数列,并求{bn}的通项公式;
(3)是否存在m∈N,使不等式a12+a22+…+an2>b12+b22+…+bn2-m对任意n∈N*都成立?若存在,求出m的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=(log32)2,b=log322,c=log3(log32),则a,b,c的大小关系是(  )
A、a>b>c
B、b>a>c
C、b>c>a
D、b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则它的体积为(  )
A、
1
3
B、
2
3
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a1=2,前n项和为Sn,{an+1}成等比数列,则Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题“函数f(x)=log2(x2+ax+1)定义域为R”是假命题,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
e1
e2
是夹角为
3
的两个单位向量,
a
=
e1
-2
e2
b
=k
e1
+
e2
,若
a
b
=0.
(1)k的值为
 

(2)|
b
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=x2+bx+c的图象经过(1,0),…,求证:这个二次函数的图象关于直线x=2对称.根据已知信息,题中二次函数图象不具有的性质是(  )
A、过点(3,0)
B、顶点(2,-2)
C、在x轴上截线段长是2
D、与y轴交点是(0,3)

查看答案和解析>>

同步练习册答案