【题目】已知数列
的前项和为
,且
,记
.
(1)求数列
的通项公式;
(2)求数列
的前
项和
.
【答案】(1)
;(2)![]()
【解析】试题分析:(1)由
,得
,两式
相减得
,即
,经验证
时也成立;(2)
,利用裂项相消法求和即可得结果.
试题解析:(1)当
时,
,则
,
当
时,由
,得
,
相减得
,即
,经验证
时也成立,
所以数列
的通项公式为
.
(2)
,
所以数列
的前
项和为:
![]()
.
【方法点晴】本题主要考查等差数列的通项与求和公式之间的关系,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:
(1)
;(2)
;
(3)
;(4)
;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.
科目:高中数学 来源: 题型:
【题目】某学校用简单随机抽样方法抽取了30名同学,对其每月平均课外阅读时间(单位:小时)进行调查,茎叶图如图:
![]()
若将月均课外阅读时间不低于30小时的学生称为“读书迷”.
(1)将频率视为概率,估计该校900名学生中“读书迷”有多少人?
(2)从已抽取的7名“读书迷”中随机抽取男、女“读书迷”各1人,参加读书日宣传活动.
(i)共有多少种不同的抽取方法?
(ii)求抽取的男、女两位“读书迷”月均读书时间相差不超过2小时的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}中,a1=1,an+an+1=(
)n , Sn=a1+4a2+42a3+…+4n﹣1an , 类比课本中推导等比数列前项和公式的方法,可求得5Sn﹣4nan= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某市2017年3月1日至16日的空气质量指数趋势图,空气质量指数
小于
表示空气质量优良,空气质量指数大于
表示空气重度污染.
![]()
(1)若该人随机选择3月1日至3月14日中的某一天到达该市,到达后停留
天(到达当日算
天),求此人停留期间空气重度污染的天数为
天的概率;
(2)若该人随机选择3月7日至3月12日中的
天到达该市,求这
天中空气质量恰有
天是重度污染的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=3sin(2x+
)的图象为C,关于函数f(x)及其图象的判断如下: ①图象C关于点(
,0)对称;
②图象C关于直线x=
对称;
③由图象C向右平移
个单位长度可以得到y=3sin2x的图象;
④函数f(x)在区间(﹣
,
)内是减函数;
⑤函数|f(x)+1|的最小正周期为
.
其中正确的结论序号是 . (把你认为正确的结论序号都填上)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com