【题目】对任意,,,给出下列命题:
①“”是“”的充要条件;
②“是无理数”是“是无理数”的充要条件;
③“”是“”的必要条件,
④“”是“”的充分条件.
其中真命题的个数为().
A.1个
B.2个
C.3个
D.4个
【答案】B
【解析】
对于①,考虑 时,不是必要条件,所以命题不正确;
对于②,根据无理数加有理数是无理数,有理数加有理数是有理数可知,命题正确;
对于③ ,小于4的数不一定小于3,但小于3的数一定小于4,说以命题正确;
对于④,时,说明不是充分条件,所以命题不正确.
对于①, ;所以“”是“”的充分条件,
在时,,此时与大小关系不确定,所以“”不是“”的必要条件,故①不正确;
对于②,因为是无理数,5是有理数,所以必是无理数,所以“是无理数”是“是无理数”的充分条件;因为是无理数,5是有理数,所以是无理数,所以“是无理数”是“是无理数”的必要条件,因此是充要条件,故②正确;
对于③,因为时,必有,所以“”是“”的必要条件,故③正确;
对于④,因为1>-2,但,所以 “”不是“”的充分条件,故④不正确.
故选B.
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极点,以轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线的参数方程为(为参数,),曲线的极坐标方程为.
(1)若,求直线的普通方程和曲线的直角坐标方程;
(2)设直线与曲线相交于,两点,当变化时,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国庆期间,某旅行社组团去风景区旅游,若旅行团人数在30人或30人以下,每人需交费用为900元;若旅行团人数多于30人,则给予优惠:每多1人,人均费用减少10元,直到达到规定人数75人为止.旅行社需支付各种费用共计15000元.
(1)写出每人需交费用关于人数的函数;
(2)旅行团人数为多少时,旅行社可获得最大利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆台的上、下底面半径分别为、,母线长,从圆台母线的中点拉一条绳子绕圆台侧面转到点(在下底面),求:
(1)绳子的最短长度;
(2)在绳子最短时,上底圆周上的点到绳子的最短距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,下列关于函数的单调性说法正确的是( )
A.函数在上不具有单调性
B.当时,在上递减
C.若的单调递减区间是,则a的值为
D.若在区间上是减函数,则a的取值范围是
E.在区间上不可能是减函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在吸烟与患肺病是否相关的判断中,有下面的说法:
(1)从独立性分析可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有的可能性使得推断错误.
(2)从独立性分析可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有的可能患有肺病;
(3)若,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;
其中说法正确的是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,如果存在实数使得,那么称为的生成函数.
(1)函数,是否为的生成函数?说明理由;
(2)设,,当时生成函数,求的对称中心(不必证明);
(3)设,,取,,生成函数,若函数的最小值是5,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是一个由和构成的行列的数表,且中所有数字之和不小于,所有这样的数表构成的集合记为,记为的第行各数之和,为的第列各数之和,为、、,、、、、中的最大值.
(1)对如下数表,求的值;
(2)设数表,求的最小值;
(3)已知为正整数,对于所有的,,且的任意两行中最多有列各数之和为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com