精英家教网 > 高中数学 > 题目详情
9.平行四边形ABCD的三个顶点分别是A(2,0),B(0,2),C(5,3).
(Ⅰ)求CD所在的直线方程;
(Ⅱ)求平行四边形ABCD的面积.

分析 (Ⅰ)首先求出CD所在的直线的斜率,然后由点斜式求直线方程;
(Ⅱ)利用点到直线的距离求出B到CD的距离,即平行四边形的高,再由两点之间的距离公式求出AB的长度,然后由平行四边形的面积公式求值.

解答 解:(Ⅰ)由kCD=kAB=-1,再由点斜式可得lCD:x+y-8=0…(6分)
(Ⅱ)由(Ⅰ)知lCD:x+y-8=0,由点B到直线lCD的距离公式$d=\frac{{|{0+2-8}|}}{{\sqrt{1+1}}}=3\sqrt{2}$,…(8分)
又A,B两点间距离$|{AB}|=2\sqrt{2}$…(10分)
所以${S_{ABCD}}=3\sqrt{2}×2\sqrt{2}=12$…(13分)

点评 本题考查了直线方程的求法以及点到直线的距离公式的运用;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若sin3θ-3$\sqrt{3}$cos3θ≥0,0<θ<2π,则角θ的取值范围是(  )
A.[0,$\frac{π}{3}$]B.[$\frac{π}{3},π$]C.[$\frac{π}{3},\frac{4π}{3}$]D.[$\frac{π}{3},\frac{2π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,角A,B,C所对的边分别是a,b,c,已知b-c=$\frac{1}{4}$a,2sinB=3sinC,则cosA的值为(  )
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(1)若F为PC的中点,求证:PC⊥平面AEF;
(2)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.m,n是空间两条不同的直线,α,β是两个不同的平面,则下列命题正确的是(  )
①m⊥α,n∥β,α∥β⇒m⊥n;②m⊥n,α∥β,m⊥α⇒n∥β;
③m⊥n,α∥β,m∥α⇒n⊥β;④m⊥α,m∥n,α∥β⇒n⊥β;(  )
A.①②B.①④C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,在三棱锥A-BCD中,BC=DC=AB=AD=$\sqrt{2}$,BD=2,平面ABD⊥平面BCD,O为BD中点,点P,Q分别为线段AO,BC上的动点(不含端点),且AP=CQ,则三棱锥P-QCO体积的最大值为$\frac{\sqrt{2}}{48}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知点A(x,y),B(2x+y,3x+4y)在直线l上,则l的方程为3x′-y′+y-3x=0,(x,y为已知常数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知数列{an}满足a1=1,a2=2,an+2=(1+cos2$\frac{nπ}{2}$)an+sin2$\frac{nπ}{2}$,则该数列的前12项和为(  )
A.211B.212C.126D.147

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数f(x)(x∈R)满足f(x)=2x•f(x-2),且f(-4)=1,则f(4)=16.

查看答案和解析>>

同步练习册答案