精英家教网 > 高中数学 > 题目详情
16.已知二次函数f(x)=x2-2x+ab(a≠b)有唯一的零点,则代数式|$\frac{{a}^{2}+{b}^{2}+2}{a-b}$|的最小值是(  )
A.8$\sqrt{2}$B.6C.4$\sqrt{2}$D.4

分析 由二次函数f(x)有唯一零点,便有△=0,这样便得到ab=1,从而2ab=2,从而有$|\frac{{a}^{2}+{b}^{2}+2}{a-b}|=|a-b+\frac{4}{a-b}|$,根据基本不等式即可求出原代数式的最小值.

解答 解:二次函数f(x)有唯一零点;
∴△=4-4ab=0;
∴ab=1;
∴$|\frac{{a}^{2}+{b}^{2}+2}{a-b}|=|\frac{{a}^{2}-2ab+{b}^{2}+4}{a-b}|$=$|(a-b)+\frac{4}{a-b}|=|a-b|+\frac{4}{|a-b|}≥4$;
∴原代数式的最小值是4.
故选:D.

点评 考查函数零点的概念,二次函数有一个零点时的判别式△的取值情况,分离常数法的运用,基本不等式用于求最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.设(1-x)2015=a0+a1x+a2x2+…+a2014x2014+a2015x2015,则a2014=2015.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知-2,a1,a2,-8成等差数列,-2,b1,b2,b3,-8成等比数列,则$\frac{{a}_{2}-{a}_{1}}{{b}_{2}}$等于(  )
A.$\frac{1}{4}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{1}{2}$或-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.$\sqrt{(2-π)^{2}}$+lg25-lg$\frac{1}{4}$的值为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.甲、乙两人独立地解决同一个问题,甲能解决这个问题的概率是P1,乙能解决这个问题的概率是P2,那么至少有一人能解决这个问题的概率是(  )
A.P1+P2B.P1P2C.1-P1P2D.1-(1-P1)(1-P2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在如图所示的方框中,每个方框涂一种颜色,且相邻的方框涂不同的颜色,现有3种不同的颜色可供选择,则不同的涂色方案共有(  )
A.12种B.16种C.18种D.24种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\frac{π}{2}<α<π$,sin$α=\frac{4}{5}$,
(Ⅰ)求tanα的值;
(Ⅱ)求cos2α+sin($α+\frac{π}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为e=2,右焦点F到其渐进线的距离为$\frac{\sqrt{3}}{2}$,抛物线y2=2px的焦点与双曲线的右焦点F重合.过该抛物线的焦点的一条直线交抛物线于A、B两点,正三角形ABC的顶点C在直线x=-1上,则△ABC的边长是(  )
A.8B.10C.12D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}中,d=2,S100=10000,求a1与an

查看答案和解析>>

同步练习册答案