精英家教网 > 高中数学 > 题目详情
已知向量
a
=(-1,1),
b
=(3,m),若
a
b
,则实数m=(  )
A、1B、-1C、3D、-3
考点:数量积判断两个平面向量的垂直关系
专题:平面向量及应用
分析:利用向量垂直的充要条件数量积为0;利用向量的数量积公式列出方程求出m的值.
解答: 解:向量
a
=(-1,1),
b
=(3,m),若
a
b

a
b
=0,
即-3+m=0,
∴m=3.
故选:C.
点评:本题考查向量的数量积运算与向量垂直的充要条件,属容易题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,有an+an+1+an+2(n∈N*)为定值,且a100=2,a200=3,a300=4,则此数列{an}的前2014项的和S2014=(  )
A、6039B、6042
C、6043D、6041

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(2,1),
b
=(3,4),则向量
a
+
b
a
-
b
的夹角为(  )
A、锐角B、直角C、钝角D、π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
与向量
b
的夹角为90°,且|
a
|=1,|
b
|=2,若
c
=
a
+λ
b
c
⊥(2
a
-
b
),则实数λ的值为(  )
A、λ=
1
4
B、λ=
1
3
C、λ=
1
2
D、λ=1

查看答案和解析>>

科目:高中数学 来源: 题型:

某校对高三年级1200名学生进行健康检查,按性别用分层抽样的方法抽取一个容量为120人的样本.已知女生抽到了55人,则该校男生的人数是(  )
A、65B、550
C、600D、650

查看答案和解析>>

科目:高中数学 来源: 题型:

若存在正实数M,对于任意x∈(1,+∞),都有|f(x)|≤M,则称函数f(x)在(1,+∞) 上是有界函数.下列函数:
①f(x)=
1
x-1
;   
②f(x)=
x
x2+1
;   
③f(x)=
lnx
x
;  
④f(x)=xsinx.
其中“在(1,+∞)上是有界函数”的序号为(  )
A、②③B、①②③
C、②③④D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图及其尺寸如图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,则这个几何体的表面积为(  )
A、2(1+2
3
)π+4
2
B、2(1+
3
)π+4
2
C、4(1+
3
)π+4
2
D、2(2+
3
)π+4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司有普通职员150人、中级管理人员40人、高级管理人员10人,现采用分层抽样的方法从这200人中抽取40人进行问卷调查,若在已抽取的40人的问卷中随机抽取一张,则所抽取的恰好是一名高级管理人员的答卷的概率=(  )
A、
1
4
B、
1
5
C、
1
20
D、
1
100

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对边分别为a,b,c,且
sinA
a
=
3
cosB
b

(1)求角B的大小;
(2)如果b=2,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案