精英家教网 > 高中数学 > 题目详情
15.$\frac{1+tan15°}{1-tan15°}$的值为(  )
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.2+$\sqrt{3}$D.2-$\sqrt{3}$

分析 由条件利用两角和的正弦公式,求得所给式子的值.

解答 解:$\frac{1+tan15°}{1-tan15°}$=$\frac{tan45°+tan15°}{1-tan45°tan15°}$=tan(45°+15°)=tan60°=$\sqrt{3}$,
故选:B.

点评 本题主要考查两角和的正弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=Asin(x+φ)(A>0,|φ|<$\frac{π}{2}$),当x=$\frac{2}{3}$π时,f(x)取最大值,则φ=-$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设an=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$(n∈N*),那么an+1-an=(  )
A.$\frac{1}{2n+1}$B.$\frac{1}{2n+2}$C.$\frac{1}{2n+1}$+$\frac{1}{2n+2}$D.$\frac{1}{2n+1}$-$\frac{1}{2n+2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某数列{an}是等比数列,记其公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,q=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知P(-2,y)是角θ终边上的一点,且$sinθ=\frac{{\sqrt{5}}}{5}$,求cosθ,tanθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图是导函数y-f′(x)的图象,那么函数的极大值点为x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an},满足a1=2,a3=6
(1)求该数列的公差d和通项公式an
(2)若数列{bn}的前n项的和为${b_n}=\frac{4}{{{a_n}•{a_{n+1}}}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.{an}是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知cosα=$\frac{3}{5},cos(α-β)=\frac{12}{13}$,且0<β<α<$\frac{π}{2}$,
(1)求tan2α的值;       
(2)求cosβ.

查看答案和解析>>

同步练习册答案