精英家教网 > 高中数学 > 题目详情
5.设集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},
(1)若a=10,求A∩B;
(2)求能使A⊆B成立的a值的集合.

分析 (1)a=10时,A={x|21≤x≤25},由此能求出A∩B.
(2)由A⊆B,列出不等式组,由此能求出使A⊆A∩B成立的a的值的集合.

解答 解:(1)a=10时,A={x|21≤x≤25},
A∩B={x|21≤x≤22}…(6分)
(2)由A⊆B,则$\left\{{\begin{array}{l}{2a+1≤3a-5}\\{2a+1≥3}\\{3a-5≤22}\end{array}}\right.$,或2a+1>3a-5…(11分)
解得6≤a≤9或a<6,即a≤9,
∴使A⊆A∩B成立的a的值的集合为{a|a≤9}…(12分)

点评 本题考查交集的求法,考查集合的求法,是基础题,解题时要认真审题,注意交集、子集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知从集合M到N的映射f满足f(a)-f(b)-f(c)=0,且集合M={a,b,c},N={-1,0,1},那么映射f的个数为(  )
A.7B.5C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知全集U={0,1,2,3,4,5},集合A={0,1,3},集合B={2,4},则(∁UA)∩(∁UB)=(  )
A.{0,5}B.{0,1,2,3,4,5}C.{0,1,2}D.{5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知a,b∈R,且$\frac{a}{1-i}+\frac{b}{2-i}=\frac{1}{3-i}$,则数列{an+b}前100项的和为-910.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知在△ABC中,a,b,c分别为∠A,∠B,∠C的对边,且满足(2c-b)cosA=acosB
(1)求A的大小;
(2)若a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合M={x|x2<4},N={x|x<1},则M∩N=(  )
A.{x|-2<x<1}B.{x|x<-2}C.{x|x<1}D.{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图示:半圆O的直径为2,A为直径延长线上的一点,OA=2,B为半圆上任意一
点,以AB为一边作等边三角形ABC.则四边形OACB的面积最大值是2+$\frac{5}{4}$$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.
(Ⅰ)证明:A1C1=AB1
(Ⅱ)若AC⊥AB1,∠BCC1=120°,AB=BC,求二面角A-A1B1-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求符合下列条件的双曲线的标准方程
(1)焦点在x轴上,顶点间的距离为6,渐近线方程为y=±$\frac{1}{3}x$
(2)与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1共焦点,它们的离心率之和为$\frac{14}{5}$.

查看答案和解析>>

同步练习册答案