精英家教网 > 高中数学 > 题目详情
17.设双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的左、右焦点分别为F1,F2,点P在第一象限内,且是以F1F2为直径的圆与双曲线的一个交点,延长PF2,与双曲线交于点Q.若|PF1|=|QF2|,则直线PF2的斜率为(  )
A.-3B.-1C.1D.3

分析 设直线PF2的倾斜角为α,则|PF1|=|QF2|=2csinα,|PF2|=-2ccosα,可得2a=2csinα+2ccosα,△F1F2Q中,由余弦定理,化简可得tanα,即可求出直线PF2的斜率.

解答 解:设直线PF2的倾斜角为α,
则|PF1|=|QF2|=2csin(180°-α)=2csinα,
|PF2|=2ccos(180°-α)=-2ccosα,
∴2a=|PF1|-|PF2|=2csinα+2ccosα,
△F1F2Q中,由余弦定理可得
(2csinα+2csinα+2ccosα)2=4c2+(2csinα)2-2•2c•(2csinα)•cosα,
化简可得4=12sin2α+4cos2α+24sinαcosα,
即为sinα+3cosα=0,
可得tanα=-3,
即直线PF2的斜率为-3.
故选:A.

点评 本题考查直线与双曲线的位置关系,考查双曲线的定义和三角形的余弦定理,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.(1)把49写成两个正数的积,当这两个正数各取何值时,它们的和最小?
(2)把36写成两个正数的和,当这两个正数各取何值时,它们的积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某学校新来了五名学生,学校准备把他们分配到甲、乙、丙三个班级,每个班级至少分配一人,其中学生A不分配到甲班的分配方案种数是100.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知边长为2的正方形SG₁G₂G₃,E,F分别是G₁G₂,G₂G₃的中点,SG₂交EF于点D,现沿着线段SE,SF,EF翻折成四面体,使G₁,G₂,G₃重合于点G,则四面体S-EFG中有:(A)SD⊥平面EFG;(B)SG⊥平面EFG;(C)GF⊥平面SGF;(D)GD⊥平面SEF.
(1)画出四面体的草图,并在(A)(B)(C)(D)四个结论中选择你认为正确的结论,加以证明;
(2)求四面体S-EFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.以坐标原点为对称中心,两坐标轴为对称轴的双曲线C的一条渐近线的斜率为$\sqrt{3}$,则双曲线C的离心率为(  )
A.2或$\sqrt{3}$B.2或$\frac{2\sqrt{3}}{3}$C.$\frac{2\sqrt{3}}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知定义在R上的连续函数f(x)满足f(0)=f(1).
(1)若f(x)=ax2+x,解不等式$\left|{f(x)}\right|<ax+\frac{3}{4}$;
(2)若任意x1,x2∈[0,1]且x1≠x2时,有|f(x1)-f(x2)|<|x1-x2|,求证:$\left|{f({x_1})-f({x_2})}\right|<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}的前n项的和为Sn,a1=-1,a2=2,满足Sn+1=3Sn-2Sn-1-an-1+2(n≥2),则a2016=20162-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在某一温度下,直径为0.2m,高为0.8m上端为活塞的圆柱体内某气体的压强p(N/m2)与体积V(m3)的函数关系式为p=$\frac{80}{V}$,而正压力F(N)与压强p(N/m2)的函数关系为F=pS,其中S(m2)为受力面积.设温度保持不变,要使气体的体积缩小为原来的一半.求活塞克服气体压力做多少功?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若存在实数x,y满足$\left\{\begin{array}{l}{2x-y-2<0}\\{x-2y+2>0}\\{x+y-2>0}\\{m(x+1)-y=0}\\{\;}\end{array}\right.$,则实数m的取值范围是(  )
A.(0,$\frac{2}{7}$)B.($\frac{2}{7}$,$\frac{2}{3}$)C.($\frac{2}{3}$,$\frac{4}{5}$)D.($\frac{2}{7}$,$\frac{4}{5}$)

查看答案和解析>>

同步练习册答案