分析 AA的分配方案有2种,若A分配到的班级不再分配其他学生,若A分配到的班级再分配一名学生,若A分配到的班级再分配两名学生,根据分类分步计数原理可得.
解答 解:A的分配方案有2种,若A分配到的班级不再分配其他学生,则把其余四人分组后分配到另外两个班级,分配方法种数是(C43+$\frac{{C}_{4}^{2}{C}_{2}^{2}}{{A}_{2}^{2}}$)A22=14;
若A分配到的班级再分配一名学生,则把剩余的三名学生分组后分配到另外两个班级,分配方法种数是C41C31A22=24;
若A分配到的班级再分配两名学生,则剩余的两名学生就分配到另外的两个班级,分配方法种数是C42A22=12.故总数为2×(14+24+12)=100.
故答案为:100.
点评 本题考查计数原理的应用,解题注意优先分析排约束条件多的元素.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{e-\sqrt{{e}^{2}-1}}{e}$ | B. | $\frac{\sqrt{2{e}^{2}+1}-e}{e}$ | C. | $\frac{\sqrt{{e}^{2}+1}-e}{e}$ | D. | e+$\frac{1}{e}$-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (8,-6) | B. | (-6,1) | C. | (7,17) | D. | (-7,17) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | n(n+2) | B. | $\frac{n}{2}$(2n+3) | C. | n(2n+3) | D. | $\frac{n}{2}$(2n+1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | -1 | C. | 1 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{2}$ | B. | $2\sqrt{3}$ | C. | 4 | D. | $\sqrt{2}+\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com