精英家教网 > 高中数学 > 题目详情
6.如图,在某一温度下,直径为0.2m,高为0.8m上端为活塞的圆柱体内某气体的压强p(N/m2)与体积V(m3)的函数关系式为p=$\frac{80}{V}$,而正压力F(N)与压强p(N/m2)的函数关系为F=pS,其中S(m2)为受力面积.设温度保持不变,要使气体的体积缩小为原来的一半.求活塞克服气体压力做多少功?

分析 设活塞运动的距离为xm,由题意可知W=${∫}_{0}^{0.4}$F(x)dx,根据定积分的计算法则计算即可.

解答 解:设活塞运动的距离为xm,则活塞受到的压强为p=$\frac{80}{V}$,
从而活塞受到的压力为F=pS=$\frac{80}{v}$•S=$\frac{80}{0.8-x}$,
活塞克服气体压力所做的功为:W=${∫}_{0}^{0.4}$F(x)dx=-80ln(0.8-x)|${\;}_{0}^{0.4}$=80ln2,
故活塞克服气体压力做功为80ln2J

点评 本题考查了定积分在物理中的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.等差数列{an}的前n项和为Sn,若S2n-1=(2n-1)(2n+1),则Sn=(  )
A.n(n+2)B.$\frac{n}{2}$(2n+3)C.n(2n+3)D.$\frac{n}{2}$(2n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的左、右焦点分别为F1,F2,点P在第一象限内,且是以F1F2为直径的圆与双曲线的一个交点,延长PF2,与双曲线交于点Q.若|PF1|=|QF2|,则直线PF2的斜率为(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知奇函数f(x),偶函数g(x)满足f(x)+g(x)=ax(a>0且a≠1).
(1)求证:f(2x)=2f(x)•g(x);
(2)设f(x)的反函数是f-1(x),当a=$\sqrt{2}-1$时,试比较f-1[g(x)]与-1的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知三棱锥的三视图如图所示,其中侧视图是边长为$\sqrt{3}$的正三角形,则该几何体的外接球的体积为(  )
A.$\frac{16π}{3}$B.$\frac{32}{3}π$C.4$\sqrt{3}$πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=x|x-a|+|x+b|(a,b∈R).
(1)若a=2,b=1,试求函数f(x)在[0,2]上的值域;
(2)若b=0,1<a<2,试求函数f(x)在[-1,3]上的最大值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示是沿圆锥的两条母线将圆锥削去一部分后所得几何体的三视图,其体积为$\frac{16π}{9}+\frac{{2\sqrt{3}}}{3}$,则圆锥的母线长为(  )
A.$2\sqrt{2}$B.$2\sqrt{3}$C.4D.$\sqrt{2}+\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设正三角形ABC的外接圆内随机取一点,则此点落在正三角形ABC内的概率为$\frac{{3\sqrt{3}}}{4π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(sinωx+cosωx,$\sqrt{3}$cosωx),$\overrightarrow{b}$=(cosωx-sinωx,2sinωx)(ω>0),若函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的相邻两对称轴间的距离等于$\frac{π}{2}$.
(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,a、b、c分别是角A、B、C所对的边,且f(A)=1,$a=\sqrt{3}$,b+c=3.求△ABC的面积.

查看答案和解析>>

同步练习册答案