精英家教网 > 高中数学 > 题目详情
1.已知三棱锥的三视图如图所示,其中侧视图是边长为$\sqrt{3}$的正三角形,则该几何体的外接球的体积为(  )
A.$\frac{16π}{3}$B.$\frac{32}{3}π$C.4$\sqrt{3}$πD.16π

分析 由已知中的三视图,可得正视图底边对应棱的中点,到三棱锥各个顶点的距离相等,进而求出球半径,可得体积.

解答 解:由已知中的三视图,可得该几何体的直观图如图所示:
取AB的中点F,AF的中点E,
由三视图可得:AB垂直平面CDE,且平面CDE为$\sqrt{3}$的正三角形,AB=1+3=4,
∴AF=BF=2,EF=1,
∴CF=DF=$\sqrt{{1}^{2}+{\sqrt{3}}^{2}}$=2,
故F即为棱锥外接球的球心,半径R=2,
故外接球的体积V=$\frac{4}{3}{πR}^{3}$=$\frac{32}{3}π$,
故选:B

点评 本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.求函数y=x2+$\frac{1}{{x}^{2}-4}$(x>2)的最小值,并求函数取最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.以坐标原点为对称中心,两坐标轴为对称轴的双曲线C的一条渐近线的斜率为$\sqrt{3}$,则双曲线C的离心率为(  )
A.2或$\sqrt{3}$B.2或$\frac{2\sqrt{3}}{3}$C.$\frac{2\sqrt{3}}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}的前n项的和为Sn,a1=-1,a2=2,满足Sn+1=3Sn-2Sn-1-an-1+2(n≥2),则a2016=20162-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知G是△ABC的重心,若直线PQ过点G,与AC,BC分别交于P,Q,设$\overrightarrow{CP}$=m$\overrightarrow{CA}$,$\overrightarrow{CQ}$=n$\overrightarrow{CB}$,则$\frac{1}{m}$+$\frac{1}{n}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在某一温度下,直径为0.2m,高为0.8m上端为活塞的圆柱体内某气体的压强p(N/m2)与体积V(m3)的函数关系式为p=$\frac{80}{V}$,而正压力F(N)与压强p(N/m2)的函数关系为F=pS,其中S(m2)为受力面积.设温度保持不变,要使气体的体积缩小为原来的一半.求活塞克服气体压力做多少功?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=-$\frac{1}{2}$x2+x+m的最大值是3m-$\frac{1}{2}$,则m的值是(  )
A.4B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=Acos(ωx+φ)在区间[0,π]上的图象如图所示,则函数f(x)的解析式可能是(  )
A.f(x)=2cos(2x+$\frac{π}{4}$)B.f(x)=-$\sqrt{2}$cos(x-$\frac{π}{4}$)C.f(x)=-$\sqrt{2}$cos(2x-$\frac{3π}{4}$)D.f(x)=$\sqrt{2}$cos(2x-$\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,AB=2,BC=$\sqrt{10}$,AC=3.
(1)求$\overrightarrow{AB}•\overrightarrow{AC}$的值;
(2)若O是△ABC外心,求$\overrightarrow{AO}•\overrightarrow{BC}$的值
(3)若O为△ABC外心,$\overrightarrow{AO}=p\overrightarrow{AB}+q\overrightarrow{AC}$,求p,q的值.

查看答案和解析>>

同步练习册答案