16£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨sin¦Øx+cos¦Øx£¬$\sqrt{3}$cos¦Øx£©£¬$\overrightarrow{b}$=£¨cos¦Øx-sin¦Øx£¬2sin¦Øx£©£¨¦Ø£¾0£©£¬Èôº¯Êýf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$µÄÏàÁÚÁ½¶Ô³ÆÖá¼äµÄ¾àÀëµÈÓÚ$\frac{¦Ð}{2}$£®
£¨¢ñ£©Ç󦨵ÄÖµ£»
£¨¢ò£©ÔÚ¡÷ABCÖУ¬a¡¢b¡¢c·Ö±ðÊǽÇA¡¢B¡¢CËù¶ÔµÄ±ß£¬ÇÒf£¨A£©=1£¬$a=\sqrt{3}$£¬b+c=3£®Çó¡÷ABCµÄÃæ»ý£®

·ÖÎö £¨¢ñ£©ÓÉÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄÔËËãºÍÈý½Çº¯ÊýºãµÈ±ä»»µÄÓ¦Óÿɵú¯Êý½âÎöʽΪf£¨x£©=$2sin£¨2¦Øx+\frac{¦Ð}{6}£©$£¬ÓÉÒÑÖªÀûÓÃÖÜÆÚ¹«Ê½¼´¿ÉÇ󦨵ÄÖµ£®
£¨¢ò£©ÓÉf£¨A£©=1¿ÉÇó$sin£¨2A+\frac{¦Ð}{6}£©=\frac{1}{2}$£¬½áºÏ·¶Î§$\frac{¦Ð}{6}£¼2A+\frac{¦Ð}{6}£¼\frac{13}{6}¦Ð$£¬¼´¿É½âµÃAµÄÖµ£¬ÓÉÓàÏÒ¶¨Àí¿ÉµÃb2+c2-bc=3£¬ÓÖb+c=3£¬ÁªÁ¢½âµÃ£ºb£¬cµÄÖµ£¬ÀûÓÃÈý½ÇÐÎÃæ»ý¹«Ê½¼´¿É¼ÆËãµÃ½â£®

½â´ð £¨±¾ÌâÂú·ÖΪ12·Ö£©
½â£º£¨¢ñ£©f£¨x£©=a•b=${cos^2}¦Øx-{sin^2}¦Øx+2\sqrt{3}cos¦Øx•sin¦Øx$=$cos2¦Øx+\sqrt{3}sin2¦Øx$=$2sin£¨2¦Øx+\frac{¦Ð}{6}£©$£¬¡­£¨4·Ö£©
¡ß¦Ø£¾0£¬
¡à$º¯Êýf£¨x£©µÄÖÜÆÚT=\frac{2¦Ð}{2¦Ø}=\frac{¦Ð}{¦Ø}=¦Ð$£¬
¡à¦Ø=1¡­£¨5·Ö£©
£¨¢ò£©¡ß$f£¨x£©=2sin£¨2x+\frac{¦Ð}{6}£©$£¬
ÓÖ¡ßf£¨A£©=1£¬
¡à$sin£¨2A+\frac{¦Ð}{6}£©=\frac{1}{2}$£¬¶ø$\frac{¦Ð}{6}£¼2A+\frac{¦Ð}{6}£¼\frac{13}{6}¦Ð$£¬
¡à$2A+\frac{¦Ð}{6}=\frac{5}{6}¦Ð$£¬
¡à$A=\frac{¦Ð}{3}$£¬¡­£¨8·Ö£©
ÓÉÓàÏÒ¶¨ÀíÖª$cosA=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}$£¬
¡àb2+c2-bc=3£¬ÓÖb+c=3£¬ÁªÁ¢½âµÃ£º$\left\{\begin{array}{l}b=2\\ c=1\end{array}\right.»ò\left\{\begin{array}{l}b=1\\ c=2\end{array}\right.$£¬¡­£¨10·Ö£©
¡à${S_{¡÷ABC}}=\frac{1}{2}bcsinA=\frac{{\sqrt{3}}}{2}$£¬¡­£¨12·Ö£©

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄÔËËãºÍÈý½Çº¯ÊýºãµÈ±ä»»µÄÓ¦Óã¬ÖÜÆÚ¹«Ê½£¬ÓàÏÒ¶¨Àí£¬Èý½ÇÐÎÃæ»ý¹«Ê½ÒÔ¼°ÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖÊÔÚ½âÈý½ÇÐÎÖеÄ×ÛºÏÓ¦Ó㬿¼²éÁËת»¯Ë¼ÏëºÍÊýÐνáºÏ˼Ï룬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÔÚijһζÈÏ£¬Ö±¾¶Îª0.2m£¬¸ßΪ0.8mÉ϶ËΪ»îÈûµÄÔ²ÖùÌåÄÚÄ³ÆøÌåµÄѹǿp£¨N/m2£©ÓëÌå»ýV£¨m3£©µÄº¯Êý¹ØÏµÊ½Îªp=$\frac{80}{V}$£¬¶øÕýѹÁ¦F£¨N£©Óëѹǿp£¨N/m2£©µÄº¯Êý¹ØÏµÎªF=pS£¬ÆäÖÐS£¨m2£©ÎªÊÜÁ¦Ãæ»ý£®Éèζȱ£³Ö²»±ä£¬ÒªÊ¹ÆøÌåµÄÌå»ýËõСΪԭÀ´µÄÒ»°ë£®Çó»îÈû¿Ë·þÆøÌåѹÁ¦×ö¶àÉÙ¹¦£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èô´æÔÚʵÊýx£¬yÂú×ã$\left\{\begin{array}{l}{2x-y-2£¼0}\\{x-2y+2£¾0}\\{x+y-2£¾0}\\{m£¨x+1£©-y=0}\\{\;}\end{array}\right.$£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨0£¬$\frac{2}{7}$£©B£®£¨$\frac{2}{7}$£¬$\frac{2}{3}$£©C£®£¨$\frac{2}{3}$£¬$\frac{4}{5}$£©D£®£¨$\frac{2}{7}$£¬$\frac{4}{5}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔÚ¡÷ABCÖУ¬ÇóÖ¤£º$\frac{{a}^{2}-{b}^{2}}{{c}^{2}}$=$\frac{sin£¨A-B£©}{sinC}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚ¡÷ABCÖУ¬AB=2£¬BC=$\sqrt{10}$£¬AC=3£®
£¨1£©Çó$\overrightarrow{AB}•\overrightarrow{AC}$µÄÖµ£»
£¨2£©ÈôOÊÇ¡÷ABCÍâÐÄ£¬Çó$\overrightarrow{AO}•\overrightarrow{BC}$µÄÖµ
£¨3£©ÈôOΪ¡÷ABCÍâÐÄ£¬$\overrightarrow{AO}=p\overrightarrow{AB}+q\overrightarrow{AC}$£¬Çóp£¬qµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=ax-2£¬g£¨x£©=loga|x|£¨ÆäÖÐa£¾0ÇÒa¡Ù1£©£¬Èôf£¨5£©•g£¨-3£©£¾0£¬Ôòf£¨x£©£¬g£¨x£©ÔÚÍ¬Ò»×ø±êϵÄڵĴóÖÂͼÏóÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬Èô£¨a+b-c£©£¨a-b+c£©=bc£®
£¨¢ñ£©ÇóAµÄÖµ£»
£¨¢ò£©ÒÑÖªÏòÁ¿$\overrightarrow{m}$=$£¨c£¬\sqrt{3}+1£©$£¬$\overrightarrow{n}$=£¨b£¬2£©£¬Èô$\overrightarrow{m}$Óë$\overrightarrow{n}$¹²Ïߣ¬ÇótanC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®º¯Êýf£¨x£©=Asin£¨¦Øx+¦Õ£©£¨A£¾0£¬¦Ø£¾0£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬Ôò$f£¨\frac{11¦Ð}{24}£©$µÄֵΪ£¨¡¡¡¡£©
A£®$-\frac{{\sqrt{6}}}{2}$B£®$-\frac{{\sqrt{3}}}{2}$C£®$-\frac{{\sqrt{2}}}{2}$D£®-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=|x-a|-|x-4|£¨x¡ÊR£¬a¡ÊR£©µÄÖµÓòΪ[-2£¬2]£®
£¨1£©ÇóʵÊýaµÄÖµ£»
£¨2£©Èô´æÔÚx0¡ÊR£¬Ê¹µÃf£¨x0£©¡Üm-m2£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸