分析 利用正弦定理、倍角公式、和差化积即可证明.
解答 证明:由正弦定理可得:$\frac{{a}^{2}-{b}^{2}}{{c}^{2}}$=$\frac{si{n}^{2}A-si{n}^{2}B}{si{n}^{2}C}$=$\frac{\frac{1-cos2A}{2}-\frac{1-cos2B}{2}}{si{n}^{2}C}$
=$\frac{\frac{1}{2}(cos2B-cos2A)}{si{n}^{2}C}$=$\frac{-sin(B+A)sin(B-A)}{si{n}^{2}C}$=$\frac{sin(A-B)}{sinC}$.
故:$\frac{{a}^{2}-{b}^{2}}{{c}^{2}}$=$\frac{sin(A-B)}{sinC}$.
点评 本题主要考查了正弦定理、倍角公式、和差化积公式在三角函数化简求值及证明中的应用,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $\frac{1}{4}$ | C. | -4 | D. | $-\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {3} | B. | {3.4} | C. | {3.4,5} | D. | {3.4,5,6} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com