精英家教网 > 高中数学 > 题目详情
14.在平面直角坐标系xOy中,如图所示,已知椭圆$\frac{x^2}{9}+\frac{y^2}{5}=1$的左、右顶点分别为A,B,右焦点为F.设过点T(t,m)的直线TA,TB与此椭圆分别交于点M(x1,y1),N(x2,y2),其中m>0,y1>0,y2<0.
(Ⅰ)设动点P满足:|PF|2-|PB|2=4,求点P的轨迹;
(Ⅱ)设${x_1}=2,{x_2}=\frac{1}{3}$,求点T的坐标;
(Ⅲ)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关),并求出该定点的坐标.

分析 (Ⅰ)由题意求得A,B和F坐标,设P,根据两点之间的坐标公式,求得|PF|2,|PB|2,由|PF|2-|PB|2=4,整理求得$x=\frac{9}{2}$,即可求得点P的轨迹;
(Ⅱ)分别求得M和N坐标及AM和AN直线方程,联立即可求得点T的坐标;
(Ⅲ)设直线AT,BT的方程代入代入椭圆方程,求得M和N坐标,当x1=x2,求得m,求得MN的方程,求得点D,当x1≠x2,$m≠2\sqrt{10}$,求得直线MD和ND的斜率,由kMD=kND,直线MN过点D(1,0),因此直线MN必过x轴上一定点D(1,0).

解答 解:(Ⅰ)由题设得,A(-3,0),B(3,0),F(2,0),设动点P(x,y),
由|PF|2=(x-2)2+y2,|PB|2=(x-3)2+y2
∵|PF|2-|PB|2=4
代入化简得,$x=\frac{9}{2}$.
故点P的轨迹为直线$x=\frac{9}{2}$.…(4分)
(Ⅱ)由x1=2,$\frac{{{x_1}^2}}{9}+\frac{{{y_1}^2}}{5}=1$,y1>0得${y_1}=\frac{5}{3}$,则点$M({2,\frac{5}{3}})$,直线AM的方程为$y=\frac{1}{3}x+1$,
由${x_2}=\frac{1}{3}$,$\frac{{{x_2}^2}}{9}+\frac{{{y_2}^2}}{5}=1$,y2<0得${y_2}=-\frac{20}{9}$,则点$N({\frac{1}{3},-\frac{20}{9}})$,直线AN的方程为$y=\frac{5}{6}x-\frac{5}{2}$,
由$\left\{{\begin{array}{l}{y=\frac{5}{6}x-\frac{5}{2}}\\{y=\frac{1}{3}x+1}\end{array}}\right.⇒T({7,\frac{10}{3}})$…(8分)
(Ⅲ)证明:由题设知,直线AT的方程为:$y=\frac{m}{12}({x+3})$,直线BT的方程为:$y=\frac{m}{6}({x-3})$,
点M(x1,y1)满足$\left\{{\begin{array}{l}{{y_1}=\frac{m}{6}({{x_1}-3})}\\{\frac{{{x_1}^2}}{9}+\frac{{{y_1}^2}}{5}=1}\end{array}}\right.⇒{x_1}≠-3,{x_1}=\frac{{240-3{m^2}}}{{80+{m^2}}},{y_1}=\frac{40m}{{80+{m^2}}}$;
点N(x2,y2)满足$\left\{{\begin{array}{l}{{y_2}=\frac{m}{6}({{x_2}-3})}\\{\frac{{{x_2}^2}}{9}+\frac{{{y_2}^2}}{5}=1}\end{array}}\right.⇒{x_2}≠-3,{x_2}=\frac{{3{m^2}-60}}{{20+{m^2}}},{y_2}=\frac{-20m}{{20+{m^2}}}$;
若x1=x2,$\frac{{240-3{m^2}}}{{80+{m^2}}}$=$\frac{{3{m^2}-60}}{{20+{m^2}}}$且m>0,得$m=2\sqrt{10}$,
此时直线MN的方程为x=1,过点D(1,0);
若x1≠x2,则$m≠2\sqrt{10}$,直线MD的斜率${k_{MD}}=\frac{40m}{{80+{m^2}}}÷({\frac{{240-3{m^2}}}{{80+{m^2}}}-1})=\frac{10m}{{40-{m^2}}}$,
直线ND的斜率${k_{ND}}=\frac{-20m}{{20+{m^2}}}÷({\frac{{3{m^2}-60}}{{20+{m^2}}}-1})=\frac{10m}{{40-{m^2}}}$,
∴kMD=kND
∴直线MN过点D(1,0).
因此直线MN必过x轴上一定点D(1,0).…(13分)

点评 本题考查考查轨迹方程的求法,考查直线与椭圆的位置关系,直线的斜率公式,考查计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.函数f(x)=$\frac{x-1}{x+1}$的单调递增区间是(-∞,-1)和(-1,+∞)..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.点A(a,6)到直线3x-4y-6=0的距离等于3,求a的值5或15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点A(0,-2),B(0,4),动点P(x,y)满足$\overrightarrow{PA}$•$\overrightarrow{PB}$=y2-8.
(1)求动点P的轨迹方程;
(2)设(1)中所求轨迹与直线y=x+2交于C,D两点,设C( x1,y1),D( x2,y2),计算 x1 x2,y1 y2的值;
(3)求证:OC⊥OD(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为2的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为$4\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若动直线x=a与函数f(x)=sinx和g(x)=2cos2x-1的图象分别交于M,N两点,则|MN|的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=2x2-8x+m,把f(0),f(1),f(5)按从大到小排序为f(5)>f(0)>f(1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作一条直线,当直线斜率为1时,直线与双曲线左、右两支各有一个交点;当直线斜率为2时,直线与双曲线右支有两个不同的交点,则双曲线离心率的取值范围为(  )
A.(1,$\sqrt{2}$)B.(1,$\sqrt{5}$)C.($\sqrt{2}$,2)D.($\sqrt{2}$,$\sqrt{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设x、y为实数.且xy=3,求x$\sqrt{\frac{y}{x}}$$+y\sqrt{\frac{x}{y}}$的值±2$\sqrt{3}$.

查看答案和解析>>

同步练习册答案